Extension Types of Infinite Symmetric Products
无限对称积的扩展类型
基本信息
- 批准号:0072356
- 负责人:
- 金额:$ 3.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0072356PI: Jerzy DydakThe principal investigator plans to work on a general theory of dimension calledthe extension dimension. In this theory, dim(X) is not a natural number.Instead, dim(X) is a CW complex and dim(X) being at most Kmeans that K is an absolute extensor of X. In particular,dim(X) being at most the n-sphere is equivalent to the covering dimensionof X being at most n. dim(X)=K means that Kis minimal with respect to all L such that dim(X) is at most L.It turns out that infinite symmetric products play a crucial rolein the whole theory. Their properties lead to a natural algebrawith self-duality. That self-duality is an algebraic manifestationof the geometric duality between compact spaces and CW complexes.All infinite symmetric products equivalent to compactor finite-dimensional CW complexes are classified.In classical dimension theory one tries to attacha natural number n (or infinity) to every space.It turns out that the natural number n is simply a substitutefor the n-sphere and saying that dim(X) is at most n reflectsa certain relationship between the space X and the n-sphere.One can generalize the notion of dimension by consideringthe same relationship between the space X and a polyhedron Kand that is stated as "dimension of X is at most K". For example, one caninvestigate if the dimension of X is at most the projective plane.It turns out that the dimension theory constructed that wayis much closely connected to the mainstream of topology.In particular, one gets links to homological algebraand algebraic topology. One of the most interesting aspects ofthat theory is duality, a fundamental idea in the whole ofmathematics. At the simplest level it means that not onlyare we trying to attach dimension (a polyhedron) to a space,but also we attach a space to a dimension.
提案:DMS-0072356 PI:Jerzy Dydak首席研究员计划研究一种称为扩展维的维的一般理论。在这个理论中,dim(X)不是自然数,而是CW复形,dim(X)至多为K意味着K是X的绝对扩张。特别地,dim(X)至多为n-球面等价于X的覆盖维数至多为n。dim(X)=K表示K关于所有L最小使得dim(X)至多为L.结果表明无穷对称积在整个理论中起着至关重要的作用.它们的性质导致了一个具有自对偶的自然代数。这种自对偶性是紧空间与CW复形之间的几何对偶性的代数表示.所有等价于紧有限维CW复形的无穷对称积都被分类.在经典维数论中,人们试图把自然数n附加到一个自对偶性中.(或无穷大)到每一个空间。事实证明,自然数n只是一个替代品的n-球,并说,dim(X)至多n反映了空间X与n-球面之间的某种关系,我们可以把空间X与多面体K之间的这种关系推广为“X的维数至多为K”。例如,我们可以研究X的维数是否至多是射影平面,结果证明,这样构造的维数理论与拓扑学的主流有着密切的联系,特别是与同调代数和代数拓扑有着密切的联系。这个理论最有趣的方面之一就是对偶性,这是整个数学的一个基本思想。在最简单的层面上,它意味着我们不仅试图将维度(多面体)附加到空间上,而且还将空间附加到维度上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerzy Dydak其他文献
Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods
- DOI:
10.1007/s00009-018-1106-z - 发表时间:
2018-03-17 - 期刊:
- 影响因子:1.200
- 作者:
Jerzy Dydak;Thomas Weighill - 通讯作者:
Thomas Weighill
Partitions of unity and coverings
- DOI:
10.1016/j.topol.2014.05.015 - 发表时间:
2014-08-15 - 期刊:
- 影响因子:
- 作者:
Kyle Austin;Jerzy Dydak - 通讯作者:
Jerzy Dydak
Galois theory of commutative S-algebras and the generalized Chern character
伽罗瓦交换S-代数理论和广义陈省性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
E. Cuchillo-Ibanez;Jerzy Dydak;Akira Koyama;M.A. Moron;鳥居 猛 - 通讯作者:
鳥居 猛
Extensions of maps to Moore spaces
- DOI:
10.1007/s11856-015-1190-8 - 发表时间:
2015-03-28 - 期刊:
- 影响因子:0.800
- 作者:
Jerzy Dydak;Michael Levin - 通讯作者:
Michael Levin
Jerzy Dydak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerzy Dydak', 18)}}的其他基金
International Topology Conference Bedlewo 2005; Bedlewo, Poland
国际拓扑会议 Bedlewo 2005;
- 批准号:
0533289 - 财政年份:2005
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomological Dimension
数学科学:上同调维数
- 批准号:
9101283 - 财政年份:1991
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Spring Topology Conference
数学科学:春季拓扑会议
- 批准号:
8902056 - 财政年份:1988
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Decomposition of ANR's
数学科学:ANR 的分解
- 批准号:
8503392 - 财政年份:1985
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
Are family firms in Japan resilient to economic shock? Digging further by family types, management strategies, and earnings quality.
日本的家族企业能否抵御经济冲击?
- 批准号:
24K00297 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Heat regulation by the fibre types in muscle
肌肉纤维类型的热量调节
- 批准号:
DP240101172 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Discovery Projects
Towards a Smart Digital Forensic Advisor to Support First Responders with At-Scene Triage of Digital Evidence Across Crime Types
打造智能数字取证顾问,支持急救人员对不同犯罪类型的数字证据进行现场分类
- 批准号:
ES/Y010647/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
Computations of transcriptomic neuron types in cortex
皮层转录组神经元类型的计算
- 批准号:
EP/Y028295/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
- 批准号:
EP/Y037049/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
- 批准号:
EP/Y037081/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
The interaction of concrete vs. abstract message types and time of day on prosocial behaviors.
具体与抽象消息类型以及一天中的时间对亲社会行为的相互作用。
- 批准号:
24K16470 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Why do some types of biotic change produce predictable ecological, evolutionary and life history strategy change?
为什么某些类型的生物变化会产生可预测的生态、进化和生活史策略变化?
- 批准号:
EP/Y029720/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
Pediatric Hospitals as European drivers for multi-party computation and synthetic data generation capabilities across clinical specialties and data types
儿科医院是欧洲跨临床专业和数据类型多方计算和合成数据生成能力的推动者
- 批准号:
10103799 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
EU-Funded
Comprehensive Single Cell Optoporation for Diverse Types of Cells.
针对不同类型细胞的全面单细胞选择。
- 批准号:
23H00168 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)