Probability and Statistics and Related Biomolecular Sequence Analysis

概率统计及相关生物分子序列分析

基本信息

  • 批准号:
    9704552
  • 负责人:
  • 金额:
    $ 18.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

9704552 Karlin This research centers on developing new probabilistic and statistical tools of relevance to biomolecular sequence analysis with particular emphasis on: (i) The use of scan statistical analysis of marker arrays in multiple correlated sequences. Specifically, to find asymptotic distributions of extremal r-scan lengths for several stochastic models, extending earlier work of the investigators by accommodating dependent and/or transformed data. These asymptotics then serve as benchmarks for interpreting various biological correlated multiple sequence data by providing estimates of probabilities of clustering or over-dispersion of markers along one or more sequences. (ii) To provide a flexible and general framework for characterizing residue clusters and statistical significance of unusual compositions in protein 3D structures as well as the means of assessing statistical significance of strong local similarities among two or more such structures. The proposed framework is based on the study of random models for weighted labeled graphs and as such it generalizes previous work on the probabilistic foundation of general score based methods for use in protein sequence comparison. Since 1995, several prokaryotic genomes and one eukaryotic genome have been reported, and many are forthcoming. These genomes provide opportunities and pose challenges for characterizing genomic inhomogeneities, for detecting significant sequence patterns, and for evolutionary comparisons. Availability of complete genomes and massive amounts of DNA and protein sequences opens a new era in bioinformatics research. Advances in (i) and (ii) above can provide much needed tools for biomolecular data analysis and for comparison of protein sequences and corresponding three-dimensional structures. Software approaches are often used to find relationships between newly discovered sequences and the existing data banks. Similarities detected can be used to predict biologi cal characteristics of new structures, suggest directions for further experimental study, and point to possible medical applications. However, due to the accelerating growth of the data banks, random correlations might at first appear significant and thus mask the true biological information existing in the data. This research aims at putting biomolecular data analysis procedures on a firm mathematical foundation, and concomitantly reducing the masking effect of random correlations.
本研究的重点是开发与生物分子序列分析相关的新的概率和统计工具,特别强调:(i)在多个相关序列中使用标记阵列的扫描统计分析。具体来说,为了找到几个随机模型的极值r扫描长度的渐近分布,通过容纳依赖和/或转换数据扩展了研究人员早期的工作。然后,这些渐近性作为解释各种生物相关多序列数据的基准,通过提供沿一个或多个序列的聚类或过度分散标记的概率估计。(ii)提供一个灵活和通用的框架,用于表征蛋白质3D结构中不寻常成分的残基簇和统计显著性,以及评估两个或多个此类结构之间强局部相似性的统计显著性的方法。所提出的框架是基于对加权标记图随机模型的研究,因此它推广了以前在蛋白质序列比较中使用的基于一般分数的方法的概率基础上的工作。自1995年以来,几个原核生物基因组和一个真核生物基因组已经被报道,许多即将到来。这些基因组为描述基因组的不同质性、检测重要的序列模式以及进行进化比较提供了机会,同时也提出了挑战。全基因组和大量DNA和蛋白质序列的可用性开启了生物信息学研究的新时代。上述(i)和(ii)的进展可以为生物分子数据分析以及蛋白质序列和相应三维结构的比较提供急需的工具。软件方法通常用于发现新发现的序列与现有数据库之间的关系。检测到的相似性可用于预测新结构的生物特征,为进一步的实验研究指明方向,并指出可能的医学应用。然而,由于数据库的加速增长,随机相关性可能一开始看起来很重要,从而掩盖了数据中存在的真实生物信息。本研究旨在将生物分子数据分析程序建立在坚实的数学基础上,同时减少随机相关的掩蔽效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Karlin其他文献

On mutation selection balance for two-locus haploid and diploid populations.
关于双位点单倍体和二倍体群体的突变选择平衡。
Characterization of moment points in terms of Christoffel numbers
  • DOI:
    10.1007/bf02786673
  • 发表时间:
    1967-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Samuel Karlin;Larry Schumaker
  • 通讯作者:
    Larry Schumaker
Shapes of velocity curves in multiunit enzyme kinetic systems
  • DOI:
    10.1016/0025-5564(80)90006-1
  • 发表时间:
    1980-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samuel Karlin;Ron Kenett
  • 通讯作者:
    Ron Kenett
Oscillation properties of eigenvectors of strictly totally positive matrices
  • DOI:
    10.1007/bf02806392
  • 发表时间:
    1965-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Samuel Karlin
  • 通讯作者:
    Samuel Karlin
The range of stability of a polymorphic linkage equilibrium state in a two-locus two-allele selection model
  • DOI:
    10.1007/bf00275841
  • 发表时间:
    1980-10-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Samuel Karlin
  • 通讯作者:
    Samuel Karlin

Samuel Karlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Karlin', 18)}}的其他基金

Statistical Studies in Biomolecular Sequences and Topics in Total Positivity
生物分子序列的统计研究和总体积极性主题
  • 批准号:
    9403553
  • 财政年份:
    1994
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Studies in Biomolecular Sequences and Topics in Total Positivity
数学科学:生物分子序列的统计研究和总体积极性主题
  • 批准号:
    9106974
  • 财政年份:
    1991
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Analysis, Total Positivity and Related Mathematical Models in Biology
数学科学:生物学中分析、总体积极性和相关数学模型的主题
  • 批准号:
    8606244
  • 财政年份:
    1986
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Total Positivity and Mathematical Genetics
数学科学:完全积极性和数学遗传学
  • 批准号:
    8215131
  • 财政年份:
    1983
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Topics in Analysis, Total Positivity and Related Mathematical Models in Biology
生物学中的分析、总体积极性和相关数学模型主题
  • 批准号:
    7924310
  • 财政年份:
    1980
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Topics in Analysis, Total Positivity and Related Mathematical Models in Biology
生物学中的分析、总体积极性和相关数学模型主题
  • 批准号:
    7680624
  • 财政年份:
    1977
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Topics in Analysis, Total Positivity, and Related Mathematical Models in Biology
生物学中的分析、总体积极性和相关数学模型主题
  • 批准号:
    7523608
  • 财政年份:
    1976
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Standard Grant
Probability Theory and Applications in Analysis
概率论及其在分析中的应用
  • 批准号:
    7102905
  • 财政年份:
    1971
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Standard Grant

相似海外基金

Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
  • 批准号:
    2301386
  • 财政年份:
    2023
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Evolution of Differential Geometry with related to the recent progress of computational algebraic statistics
微分几何的演变与计算代数统计的最新进展有关
  • 批准号:
    16K05139
  • 财政年份:
    2016
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistics of Extrema in Disordered Systems and Related Models
无序系统极值统计及相关模型
  • 批准号:
    1513441
  • 财政年份:
    2015
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Continuing Grant
Innovation in statistics and related mathematics through computational algebraic statistics
通过计算代数统计进行统计学和相关数学的创新
  • 批准号:
    25220001
  • 财政年份:
    2013
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Recipiency of mathematical statistics and its diffusion to related research fields in Japan
日本数理统计的接受及其向相关研究领域的传播
  • 批准号:
    24530229
  • 财政年份:
    2012
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longevity-related Statistics and Their Perturbation Analysis: A Markov Chain, Matrix Calculus Approach
长寿相关统计及其扰动分析:马尔可夫链、矩阵微积分方法
  • 批准号:
    1156378
  • 财政年份:
    2012
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Standard Grant
Inverse and related problems in statistics
统计中的逆问题及相关问题
  • 批准号:
    DP0986404
  • 财政年份:
    2009
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Discovery Projects
Exact inequalities and limit theorems for Rademacher and self-normalized sums, and related statistics
Rademacher 和自归一化和的精确不等式和极限定理以及相关统计
  • 批准号:
    0805946
  • 财政年份:
    2008
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Standard Grant
Estimating the number of death from causes related to smoking in countries with insufficient vital statistics data - theory and application
估算生命统计数据不足的国家中与吸烟相关的死亡人数 - 理论与应用
  • 批准号:
    96703921
  • 财政年份:
    2008
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Research Grants
Characterizations of distributions based on regression and related statistics
基于回归和相关统计的分布特征
  • 批准号:
    293128-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 18.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了