Geometry of Arithmetic Statistics and Related Topics

算术统计几何及相关主题

基本信息

  • 批准号:
    2301386
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

A fundamental theme of contemporary number theory is that questions about numbers (for instance: how likely is it that two randomly chosen large numbers have no prime factors) have analogues in geometry — in this case — how can a set of red dots and a set of blue dots move around the surface of a sphere if no red dot is ever allowed to collide with a blue dot? One relevant geometric fact in this setting is that the red dots (and equally so the blue dots) can be rearranged in whatever order you like without ever breaking the no-collisions rule; this would not, for instance, be true if the red and blue dots were located on a line instead of on a sphere. In a non-technical setting it isn’t easy to say why this has anything to do with the likelihood of two numbers having a prime factor in common; suffice it to say that this passage between contexts has consistently generated new ideas in both number theory and geometry, and is a central theme of the PI’s proposed research. Beyond that, the PI has several projects at the interface of geometry and machine learning -- for example, can we use the kind of techniques that enable machines to play very strong chess and Go to find large configurations of points in in a grid such that no three form an isosceles triangle? This is a toy problem but the techniques we develop will tell us a lot about the prospects for accelerating progress in pure mathematics using machine learning techniques. The PI’s research is closely entwined with his work in outreach to the community outside academic mathematics, which includes a best-selling book on geometry published in 2021; during the funding period he will continue developing programs to train early-career scientists in writing for the public. This award will also support graduate student research. The proposed research covers a range of problems at the interface of number theory, algebraic topology, and algebraic topology. One main goal will be exploiting the techniques developed in PI’s collaboration with Tran and Westerland to prove upper bounds (and in some cases lower bounds) for Malle’s conjecture over function fields, an old problem which in the number field case remains almost entirely inaccessible. The new techniques suggest an interesting role for perverse sheaves in arithmetic statistics, will the PI will explore over the granting period. The PI also proposes a range of projects in arithmetic geometry, including: new directions in “twisted” arithmetic statistics (for instance: how many cubic extensions of F_q(t) are there with prime conductor?) and computational and theoretical work on the variation of the Ceresa class in families of algebraic curves, The PI will also continue collaborative work with researchers in industry on the development of machine learning techniques adapted to enable progress in pure mathematics, especially extremal combinatorics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当代数论的一个基本主题是,关于数字的问题(例如:两个随机选择的大数没有素因子的可能性有多大)在几何学中有类似的东西-在这种情况下-如果不允许红点与蓝点碰撞,一组红点和一组蓝点如何在球面上移动? 在这种情况下,一个相关的几何事实是,红点(蓝点也是如此)可以按照你喜欢的任何顺序重新排列,而不会违反无碰撞规则;例如,如果红点和蓝点位于一条线上,而不是一个球体上,这就不成立了。 在一个非技术性的环境中,很难说为什么这与两个数字有一个共同的素因子的可能性有关;可以说,这种上下文中的传递一直在数论和几何学中产生新的想法,并且是PI提出的研究的中心主题。 除此之外,PI在几何和机器学习的接口上有几个项目-例如,我们是否可以使用这种技术,使机器能够下非常强的国际象棋和围棋,以找到网格中的大点配置,使得没有三个形成等腰三角形? 这是一个玩具问题,但我们开发的技术将告诉我们很多关于使用机器学习技术加速纯数学进步的前景。 PI的研究与他在学术数学之外的社区外展工作密切相关,其中包括2021年出版的一本关于几何的畅销书;在资助期间,他将继续开发培训早期职业科学家为公众写作的计划。该奖项还将支持研究生的研究。拟议的研究涵盖了一系列的问题,数论,代数拓扑和代数拓扑的接口。 一个主要目标将是利用技术开发PI的合作与陈和韦斯特兰证明上限(在某些情况下下限)的马勒猜想的功能领域,一个老问题,其中在数域的情况下仍然几乎完全无法访问。 新技术表明,在算术统计中,反常层扮演着一个有趣的角色,PI将在授予期间进行探索。PI还提出了一系列算术几何的项目,包括:“扭曲”算术统计的新方向(例如:有多少个三次扩展的F_q(t)与素导体?)以及代数曲线族中Ceresa类变化的计算和理论工作,PI还将继续与工业研究人员合作开发机器学习技术,以实现纯数学的进步,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordan Ellenberg其他文献

Jordan Ellenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jordan Ellenberg', 18)}}的其他基金

Rational Points and Asymptotics of Distribution
有理点和分布渐进
  • 批准号:
    2001200
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Madison Moduli Weekend - A Conference on Moduli Spaces
麦迪逊 Moduli 周末 - Moduli 空间会议
  • 批准号:
    1955665
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Asymptotics for Rational Points
有理点的渐近
  • 批准号:
    1700884
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
  • 批准号:
    1402620
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Geometric Analytic Number Theory
几何解析数论
  • 批准号:
    1101267
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
  • 批准号:
    0838210
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Moduli Spaces and Algebraic Structures in Homotopy Theory
同伦理论中的模空间和代数结构
  • 批准号:
    0705428
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Rational points on varieties and non-abelian Galois groups
职业:簇上的有理点和非阿贝尔伽罗瓦群
  • 批准号:
    0448750
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
  • 批准号:
    0401616
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
  • 批准号:
    2302356
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Arithmetic Statistics, Fourier Analysis, and Equidistribution
算术统计、傅立叶分析和均匀分布
  • 批准号:
    2302590
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Applications of Analytic Uniformity in Arithmetic Statistics
分析均匀性在算术统计中的应用
  • 批准号:
    2200760
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
  • 批准号:
    RGPIN-2017-06589
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Galois Structures and Arithmetic Statistics
伽罗瓦结构和算术统计
  • 批准号:
    2200541
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Symmetries and Statistics in Arithmetic
算术中的对称性和统计
  • 批准号:
    2201346
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Arithmetic statistics of Selmer groups with a Galois action
具有伽罗瓦动作的 Selmer 群的算术统计
  • 批准号:
    2742677
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Arithmetic statistics of noncommutative modular symbols
非交换模符号的算术统计
  • 批准号:
    459838152
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    WBP Fellowship
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
  • 批准号:
    EP/S004696/2
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了