Integrable Dynamics of Knotted Vortex Filaments
打结涡丝的可积分动力学
基本信息
- 批准号:9705005
- 负责人:
- 金额:$ 5.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9705005 Calini This project concerns the connection between completely integrable partial differential equations and the topological properties of knotted closed curves which arise from models of vortex filament evolution. The principal investigator plans to show that questions regarding knot types, mechanisms for knotting and unknotting, stability of knot formations and classification of knots by means of standard representatives can be effectively addressed in this context. The two main tools that will be used are the periodic theory of relevant integrable equations (among which are the Continuous Heisenberg Model, the focusing Nonlinear Schroedinger and the sine- Gordon equations) with periodic boundary conditions, and the theory of Backlund transformations. The PI will use constructive methods for multiphase solutions to generate large classes of knot representatives and will study a precise relation between their knot type and the associated Floquet spectrum both theoretically and computationally. Backlund transformations will be used to investigate possible mechanisms for topological changes, to construct self-intersecting curves that represent transitions between different knot types and to produce examples of knots that are realized by curves with special properties (such as curves of constant torsion). Complex structures in the form of knotted and linked loops are present in many phenomena of the physical world: tornadoes, plasma loops and magnetic arches in stellar atmospheres display complicated vortex formations; mitochondrial DNA is a coiled, often knotted, molecule; bacteria strands are found to form tangled loops; links and knots are observed in certain stable mixtures of chemical media. This project concerns the connection between evolution equations whose structure is well-understood and the properties of knotted loops which arise in the study of vortex filament dynamics and DNA modeling. The principal goal of this inve stigation is the development of the mathematical tools necessary to effectively address questions regarding the mechanisms for knotting and unknotting, the stability of knot formations and the classification of knots and links. Such issues are gaining great importance in a number of applied fields: for example, an understanding of the complex vortex structures in the solar crown can provide information on how the sun's magnetic activity affects the earth's climate, while topological changes such as loop creation, knotting and unknotting appear to be at the heart of the replication mechanism of the DNA molecule, a fundamental question in cancer research.
小行星9705005 这个项目涉及完全可积的部分 微分方程和纽结闭的拓扑性质 这些曲线来自涡丝演化模型。校长 研究者计划表明,关于线结类型、机制 用于打结和解开,结形成的稳定性和分类 可以有效地解决通过标准代表的结 在这方面。将使用的两个主要工具是周期理论 相关的可积方程(其中包括连续 Heisenberg模型、聚焦非线性薛定谔方程和正弦-戈登方程),以及 贝克兰德变换。PI将使用建设性方法, 多相解决方案,以生成大类结代表, 将研究它们的结类型和相关的 Floquet频谱的理论和计算。贝克兰德 转换将被用来调查可能的机制, 拓扑变化,以构建表示 不同结类型之间的过渡,并生成结的示例 由具有特殊属性的曲线(例如 恒定扭转)。 结和连接环形式的复杂结构存在于 物理世界的许多现象:龙卷风,等离子体环, 恒星大气中的磁拱显示出复杂的涡旋 形成;线粒体DNA是一种卷曲的、通常打结的分子; 发现细菌链形成缠结的环;链接和结, 在某些稳定的化学介质混合物中观察到。这个项目 关于演化方程之间的联系,其结构是 以及研究中出现的打结环的性质 涡旋丝动力学和DNA建模。其主要目标是 研究是开发必要的数学工具, 有效解决打结机制的问题, 解结、结形成的稳定性和结的分类 和链接。这些问题在许多应用领域中越来越重要。 领域:例如,了解复杂的旋涡结构, 太阳冕可以提供太阳磁场活动的信息 影响地球的气候,而拓扑变化,如环的创建, 打结和解开似乎是复制的核心 DNA分子的作用机制,癌症的基本问题 research.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annalisa Calini其他文献
Schwarz reflection geometry I: Continuous iteration of reflection
- DOI:
10.1007/s00209-003-0523-1 - 发表时间:
2003-05-16 - 期刊:
- 影响因子:1.000
- 作者:
Annalisa Calini;Joel Langer - 通讯作者:
Joel Langer
Integrable geometric flows for curves in pseudoconformal <em>S</em><sup>3</sup>
- DOI:
10.1016/j.geomphys.2021.104249 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Annalisa Calini;Thomas Ivey - 通讯作者:
Thomas Ivey
Annalisa Calini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annalisa Calini', 18)}}的其他基金
Collaborative RUI. Nonlinear Schroedinger Models in Fluid Dynamics: Rogue Waves and Vortex Filaments
协作瑞。
- 批准号:
1109017 - 财政年份:2011
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
Collaborative Proposal: Southeastern Atlantic Mathematical Sciences Workshop, 2007 Meeting
合作提案:东南大西洋数学科学研讨会,2007 年会议
- 批准号:
0739386 - 财政年份:2007
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
RUI: Topology and Stability of Integrable Vortex Filament Motion
RUI:可积分涡丝运动的拓扑和稳定性
- 批准号:
0608587 - 财政年份:2006
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
Collaborative Proposal: Southeastern Applied Mathematics Days
合作提案:东南应用数学日
- 批准号:
0407843 - 财政年份:2004
- 资助金额:
$ 5.65万 - 项目类别:
Continuing Grant
RUI: Integrable Dynamics of Knotted Vortex Filaments
RUI:打结涡丝的可积分动力学
- 批准号:
0204557 - 财政年份:2002
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Continuing Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Fellowship Award
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 5.65万 - 项目类别:
Continuing Grant