CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics

职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征

基本信息

  • 批准号:
    2415119
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports research and educational activities to develop quantum mechanical and machine learning methods to understand and design complex multi-element alloys at the atomic level. The project focuses on complex concentrated alloys (CCAs), a class of novel alloys that mix atoms of different species at nearly equal ratios. The scientific drive for studying CCAs is to understand and utilize the vast chemical and structural design space associated with multiple elements in search of new materials properties. Current understanding about the stability, structures, and properties of alloys is limited to the corners and edges of the multi-element space, such as binary or dilute alloys. The information for CCAs close to the center of the composition space is virtually non-existent for systems with four or more elements. The project intends to fill this knowledge gap in alloy theory for these complex alloy systems by (i) establishing an accurate predictive understanding of the atomic structures in CCAs through a combination of quantum mechanical calculations and statistical mechanics methods, and (ii) integrating quantum mechanical calculations, empirical models and close-loop machine learning methods to predict the structural and defect features in CCAs for accelerated design of CCAs for structural or functional applications. The multidisciplinary nature of the project brings perspectives from multiple academic fields into the forefront of materials research. The focus of the technologically relevant CCAs will strengthen the U.S. leadership in fundamental alloy research. The education and outreach activities of the project includes five integrated parts that address learning tool innovation, broadening participation, youth material education, summer research exposure, and research career development. The project brings together national and local partners to create a multidisciplinary team with complementary expertise to strengthen Science, Technology, Engineering, and Mathematics education and raise the awareness of materials science. In collaboration with Amazon, a cloud-based learning app will be developed to transplant the PI’s research and introduce materials and data science to the general public. The PI will collaborate with SMASH Illinois to offer academic and social programs to underrepresented students to broaden participation in materials education. In parallel, summer camps with North Central College and Questek, as well as high school research programs with Adlai E. Stevenson High School will be expanded to expose the younger generation to materials science. The PI will also work closely with undergraduate and graduate students to foster multidisciplinary career development via project-based research programs.TECHNICAL SUMMARYThis CAREER award supports research and educational activities to develop first-principles and data-driven methods to understand the atomic nature of short range order (SRO) in complex concentrated alloys (CCAs) and how such chemical order influences lattice distortion, dynamics, and defect structures, thus creating opportunities for designing new advanced alloys. Severe lattice distortion is an important phenomenon that is correlated to a variety of physical and chemical properties in CCAs. However, the nature of severe lattice distortions in CCAs is poorly understood, especially with the coupling of SRO. The PI will study SRO and related lattice distortions in CCAs with a unique synergy of mechanism investigation, predictive modeling, and methodology development. The research will elucidate SRO on the structures of lattice distortions in CCAs, which will be utilized to quantify the impact of the distorted lattices on the phonon characteristics of CCAs. Results and methodology from bulk CCAs will be applied to establish a predictive mapping linking defect characteristics with local environments in CCAs, providing the foundation for computational design of CCAs for superior mechanical properties. The project will be driven by the parallel research on a hierarchical data-driven computational framework that enables efficient predictions of structure-property relationships for CCAs. The education and outreach activities of the project includes five integrated parts that address learning tool innovation, broadening participation, youth material education, summer research exposure, and research career development. The project brings together national and local partners to create a multidisciplinary team with complementary expertise to strengthen Science, Technology, Engineering, and Mathematics education and raise the awareness of materials science. In collaboration with Amazon, a cloud-based learning app will be developed to transplant the PI’s research and introduce materials and data science to the general public. The PI will collaborate with SMASH Illinois to offer academic and social programs to underrepresented students to broaden participation in materials education. In parallel, summer camps with North Central College and Questek, as well as high school research programs with Adlai E. Stevenson High School will be expanded to expose the younger generation to materials science. The PI will also work closely with undergraduate and graduate students to foster multidisciplinary career development via project-based research programs.This award is jointly supported by the Division of Materials Research and the NSF Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个职业奖项支持研究和教育活动,以开发量子力学和机器学习方法,在原子水平上理解和设计复杂的多元素合金。该项目的重点是复杂的浓缩合金(CCA),这是一类以几乎相等的比例混合不同物种的原子的新型合金。研究CCA的科学动力是理解和利用与多种元素相关的巨大化学和结构设计空间,以寻找新的材料性能。目前对合金稳定性、结构和性质的了解仅限于多元素空间的角落和边缘,如二元或稀合金。对于具有四个或更多元素的系统,接近组成空间中心的CCA的信息实际上是不存在的。该项目旨在通过以下方式填补这些复杂合金系统在合金理论方面的知识空白:(I)通过量子力学计算和统计力学方法的结合,建立对CCA中原子结构的准确预测理解,以及(Ii)集成量子力学计算、经验模型和闭环机器学习方法来预测CCA中的结构和缺陷特征,以加速结构或功能应用的CCA的设计。该项目的多学科性质将来自多个学术领域的观点带入了材料研究的前沿。与技术相关的CCA的重点将加强美国在基础合金研究方面的领导地位。该项目的教育和宣传活动包括五个综合部分,涉及学习工具创新、扩大参与、青年材料教育、暑期研究接触和研究职业发展。该项目汇集了国家和地方合作伙伴,创建了一个多学科团队,具有互补的专业知识,以加强科学、技术、工程和数学教育,并提高对材料科学的认识。与亚马逊合作,将开发一款基于云的学习应用程序,以移植PI的研究,并向普通公众介绍材料和数据科学。PI将与Smash Illinois合作,为代表不足的学生提供学术和社会项目,以扩大对材料教育的参与。与此同时,与北中学院和奎斯特克的夏令营以及与阿德莱·E·史蒂文森高中的高中研究项目也将扩大,以便让年轻一代接触材料科学。国际技术协会还将与本科生和研究生密切合作,通过基于项目的研究计划促进多学科的职业发展。技术总结这个职业奖项支持研究和教育活动,以开发第一原理和数据驱动的方法,以了解复杂浓缩合金(CCA)中短程有序(SRO)的原子性质,以及这种化学有序如何影响晶格扭曲、动力学和缺陷结构,从而为设计新的先进合金创造机会。严重的晶格畸变是CCA中的一种重要现象,它与CCA中的各种物理化学性质有关。然而,对于CCA中严重晶格扭曲的本质,特别是在SRO耦合的情况下,人们知之甚少。PI将通过机制研究、预测建模和方法开发的独特协同作用,研究CCA中的SRO和相关的晶格扭曲。这项研究将阐明随机共振对CCA中晶格扭曲结构的影响,这将被用来量化扭曲晶格对CCA声子特性的影响。将应用批量CCA的结果和方法来建立将缺陷特征与CCA中的局部环境联系起来的预测性映射,为CCA的计算设计提供基础,以获得优异的力学性能。该项目将由对分层数据驱动的计算框架的并行研究推动,该框架能够有效地预测CCA的结构-性质关系。该项目的教育和宣传活动包括五个综合部分,涉及学习工具创新、扩大参与、青年材料教育、暑期研究接触和研究职业发展。该项目汇集了国家和地方合作伙伴,创建了一个多学科团队,具有互补的专业知识,以加强科学、技术、工程和数学教育,并提高对材料科学的认识。与亚马逊合作,将开发一款基于云的学习应用程序,以移植PI的研究,并向普通公众介绍材料和数据科学。PI将与Smash Illinois合作,为代表不足的学生提供学术和社会项目,以扩大对材料教育的参与。与此同时,与北中学院和奎斯特克的夏令营以及与阿德莱·E·史蒂文森高中的高中研究项目也将扩大,以便让年轻一代接触材料科学。PI还将与本科生和研究生密切合作,通过基于项目的研究计划促进多学科的职业发展。该奖项由材料研究部和NSF高级网络基础设施办公室联合支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Optimization spatial multiple coil transmitter structure for wireless power transfer
优化无线功率传输的空间多线圈发射器结构
Insight into the Structural Variation and Sodium Storage Behavior of Polyoxometalates Encapsulated within Single-Walled Carbon Nanotubes.
深入了解单壁碳纳米管内封装的多金属氧酸盐的结构变化和钠存储行为。
  • DOI:
    10.1002/chem.202201899
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quan Sha;Dongwei Cao;Jiaxin Wang;Hanbin Hu;Jiaxin Li;Wei Chen;Lei He;Graham N. Newton;Yu
  • 通讯作者:
    Yu
Diagnosis of Congenital Hepatic Fibrosis in Adulthood.
成年先天性肝纤维化的诊断。
[Effects of elevated O3 concentration on anti-oxidative enzyme activities in Pinus tabulaeformis].
升高O3浓度对油松抗氧化酶活性的影响
PyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds
PyDII:用于计算金属间化合物中平衡固有点缺陷浓度和外在溶质位点偏好的 python 框架
  • DOI:
    10.1016/j.cpc.2015.03.015
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    H. Ding;Bharat K. Medasani;Wei Chen;K. Persson;M. Haranczyk;M. Asta
  • 通讯作者:
    M. Asta

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
  • 批准号:
    2227641
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
  • 批准号:
    2219489
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2005661
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    1945380
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940114
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
  • 批准号:
    1835782
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
  • 批准号:
    1807186
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662435
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
  • 批准号:
    21908075
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
  • 批准号:
    2340765
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
  • 批准号:
    2238328
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
  • 批准号:
    2145144
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2143233
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Development and Application of First-Principles Dielectric Embedding Many-Body Perturbation Theory for Heterogeneous Interfaces
职业:异质界面第一性原理电介质嵌入多体摄动理论的发展与应用
  • 批准号:
    2044552
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了