Indefinite and Singular Optimal (boundary) Control Problems for P.D.E's
P.D.E 的不定和奇异最优(边界)控制问题
基本信息
- 批准号:9705046
- 负责人:
- 金额:$ 7.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9705046 McMillan This project focuses on issues of boundary stabilization/optimal control of several linear and nonlinear dynamical systems on a bounded domain. The main goals of this study are the following: (1) To develop an abstract theory for the finite horizon indefinite cost problems (including singular problems) for parabolic and hyperbolic/Petrwoski partial differential equations (p.d.e.'s) with nonsmoothing observation operators. This result will be new even for standard (positive definite) finite horizon cost problems. In addition, we would like to investigate conditions for solvability of certain differential Riccati equations which are related to certain nonlinear optimal control problems. (2) Develop a minimax Riccati theory for indefinite cost problems, after first developing the standard Riccati theory (i.e., the case where there are no disturbances present in the system). (3) Verify various assumptions required by the minimax theory (which we have developed previously) for various shell models. The abstract problems that are being considered arise out of the mathematical modeling of problems in mechanics and structural design. In particular, the focus is on large vibrating structures such as satellite dishes, aircraft, antennae, etc. By necessity, the modeling of the movement of these structures results in systems of partial differential equations. Ways will be investigated in which to damp out (i.e., control) unwanted vibrations of these structures. In addition, the project seeks to address the control of vibrating structures in the presence of outside disturbances (e.g., external forces on aircraft wings). The project's goal is to contribute in filling a large gap in the literature on optimization problems for large flexible structures.
小行星9705046 该项目的重点是边界稳定/最优控制问题, 有界域上的线性和非线性动力系统。 的 本研究的主要目的是:(1)建立有限时间不确定成本的抽象理论 问题(包括奇异问题)的抛物线和 双曲/Petrwoski偏微分方程(p.d.e.)的)与 非光滑观测算子 这一结果将是新的, 标准(正定)有限时间成本问题。 另外我们 我想研究某些微分方程可解的条件 一类非线性最优控制的Riccati方程 问题 (2)发展一个极大极小Riccati理论的不确定成本问题,后 首先发展标准的黎卡提理论(即,在没有 系统中存在的干扰)。 (3)验证极小极大理论所需的各种假设(我们 之前已开发)用于各种外壳模型。 正在考虑的抽象问题产生于 机械和结构设计中问题的数学建模。 在 特别是,重点是大型振动结构,例如卫星天线, 飞机、天线等。出于必要,这些物体的运动建模 结构导致偏微分方程系统。 方式将是 研究在其中衰减(即,控制)不必要的振动 这些结构。此外,该项目还寻求解决控制 在存在外部干扰的情况下振动结构(例如,外部 飞机机翼上的力)。该项目的目标是帮助填补一个大的 大型柔性结构优化问题的文献空白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine McMillan其他文献
Restriction of placental growth from conception in the sheep results in changes in placental structure and growth factor expression that are independent of whether the fetus becomes hypoxaemic in late gestation
- DOI:
10.1016/j.placenta.2015.07.336 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Song Zhang;Paige Barker;Kimberley Botting;Claire Roberts;Christine McMillan;Caroline McMillen;Janna Morrison - 通讯作者:
Janna Morrison
Christine McMillan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
$ 7.72万 - 项目类别:
Standard Grant
Numerical Methods for Optimal Transport with Applications to Manifold Learning on Singular Spaces
最优传输的数值方法及其在奇异空间流形学习中的应用
- 批准号:
2000128 - 财政年份:2020
- 资助金额:
$ 7.72万 - 项目类别:
Standard Grant
Singular Integrals, Smoothness Spaces, and Optimal Estimates for Elliptic and Parabolic Boundary Value Problems
椭圆和抛物线边值问题的奇异积分、平滑空间和最优估计
- 批准号:
0400639 - 财政年份:2004
- 资助金额:
$ 7.72万 - 项目类别:
Standard Grant
Self-tuning optimal control of pneumatic actuators with singular pencil models and friction observers
具有奇异铅笔模型和摩擦观测器的气动执行器的自调节最优控制
- 批准号:
185777-1999 - 财政年份:2000
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual
(1)The inverse problem of electrocardiography (2) Singular optimal control with state variable constraints (3) Parameter estimation in a reaction-diffusion model for synaptic transmission
(1)心电图逆问题(2)状态变量约束下的奇异最优控制(3)突触传递反应扩散模型中的参数估计
- 批准号:
5338-1996 - 财政年份:1999
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual
Self-tuning optimal control of pneumatic actuators with singular pencil models and friction observers
具有奇异铅笔模型和摩擦观测器的气动执行器的自调节最优控制
- 批准号:
185777-1999 - 财政年份:1999
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual
(1)The inverse problem of electrocardiography (2) Singular optimal control with state variable constraints (3) Parameter estimation in a reaction-diffusion model for synaptic transmission
(1)心电图逆问题(2)状态变量约束下的奇异最优控制(3)突触传递反应扩散模型中的参数估计
- 批准号:
5338-1996 - 财政年份:1998
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual
(1)The inverse problem of electrocardiography (2) Singular optimal control with state variable constraints (3) Parameter estimation in a reaction-diffusion model for synaptic transmission
(1)心电图逆问题(2)状态变量约束下的奇异最优控制(3)突触传递反应扩散模型中的参数估计
- 批准号:
5338-1996 - 财政年份:1997
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual
(1)The inverse problem of electrocardiography (2) Singular optimal control with state variable constraints (3) Parameter estimation in a reaction-diffusion model for synaptic transmission
(1)心电图逆问题(2)状态变量约束的奇异最优控制(3)突触传递反应扩散模型中的参数估计
- 批准号:
5338-1996 - 财政年份:1996
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual
1) Singular optimal control and minimum-time trajectories 2) Control and path planning for robot systems 3) Rational spline interpolation 4)Spirial waves in excitable media
1) 奇异最优控制和最短时间轨迹 2) 机器人系统的控制和路径规划 3) 有理样条插值 4) 可激发介质中的螺旋波
- 批准号:
5338-1993 - 财政年份:1995
- 资助金额:
$ 7.72万 - 项目类别:
Discovery Grants Program - Individual