Numerical Methods for Optimal Transport with Applications to Manifold Learning on Singular Spaces
最优传输的数值方法及其在奇异空间流形学习中的应用
基本信息
- 批准号:2000128
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal transport concerns the classical question of how to optimize the cost of transporting mass from one location to another. Optimal transport models have been successfully applied in fields as diverse as atmospheric sciences, surface matching, data clustering, and manifold learning, among others. The theoretical study of optimal transport has greatly advanced in recent years and calls for improved numerical tools that can be mathematically guaranteed to have good performance. This project is aimed at the development of improved numerical methods for optimal transport calculations and variants, employing partial-differential-equation techniques to produce computational tools backed by rigorous theory. The project provides research training opportunities for undergraduate and graduate students. The PI will also engage in outreach by supervising an undergraduate team through the university's Summer Undergraduate Research Institute in Experimental Mathematics program, aimed at students who are at an earlier stage of study, with an eye toward recruitment of students from groups underrepresented in the mathematical sciences. Specifically, the project aims to exploit the geometric information that can be discerned from the regularity theory of the Monge-Ampère type equation that arises naturally in optimal transport, in order to develop numerical algorithms with proven convergence rates, error bounds, and computational complexity. The project will also undertake a systematic study of singular behavior when full regularity is unavailable to develop fast and accurate numerical schemes in such difficult cases. One intended application of this latter direction is toward a theory of manifold learning that can be applied to data sets coming from singular geometries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最优运输涉及如何优化从一个地点到另一个地点的运输成本的经典问题。最优输运模型已成功应用于大气科学、地表匹配、数据聚类和流形学习等多个领域。近年来,最优输运的理论研究有了很大的进展,这就要求改进的数值工具能够在数学上保证其良好的性能。该项目旨在发展改进的最优输运计算和变量的数值方法,采用偏微分方程技术来产生严格理论支持的计算工具。本项目为本科生和研究生提供研究训练机会。PI还将通过该大学的实验数学暑期本科生研究所(Summer undergraduate Research Institute in Experimental Mathematics)项目监督一个本科生团队,以招收数学科学领域代表性不足的学生为目标。具体来说,该项目旨在利用可从最优传输中自然产生的monge - ampantere型方程的正则理论中识别出的几何信息,以开发具有已证明的收敛率、误差界限和计算复杂性的数值算法。该项目还将进行系统的奇异行为研究,当完全正则性无法获得时,在这种困难的情况下开发快速和准确的数值方案。后一个方向的一个预期应用是可以应用于来自奇异几何的数据集的流形学习理论。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
${\mathcal {W}}_\infty $-transport with discrete target as a combinatorial matching problem
${mathcal {W}}_infty $-离散目标传输作为组合匹配问题
- DOI:10.1007/s00013-021-01606-z
- 发表时间:2021
- 期刊:
- 影响因子:0.6
- 作者:Bansil, Mohit;Kitagawa, Jun
- 通讯作者:Kitagawa, Jun
An optimal transport problem with storage fees
带仓储费的最优运输问题
- DOI:10.58997/ejde.2023.22
- 发表时间:2023
- 期刊:
- 影响因子:0.7
- 作者:Bansil, Mohit;Kitagawa, Jun
- 通讯作者:Kitagawa, Jun
Quantitative Stability in the Geometry of Semi-discrete Optimal Transport
半离散最优输运几何的定量稳定性
- DOI:10.1093/imrn/rnaa355
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Bansil, Mohit;Kitagawa, Jun
- 通讯作者:Kitagawa, Jun
Optimal transport and the Gauss curvature equation
最优传输和高斯曲率方程
- DOI:10.4310/maa.2020.v27.n4.a5
- 发表时间:2020
- 期刊:
- 影响因子:0.3
- 作者:Guillen, Nestor;Kitagawa, Jun
- 通讯作者:Kitagawa, Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Kitagawa其他文献
Longitudinal Study on the Relationship Between Daily Walking Steps and Changes in QUS Parameters in Japanese Female College Students
- DOI:
10.1016/j.jocd.2010.01.106 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Akiko Koike;Jun Kitagawa;Yoshibumi Nakahara - 通讯作者:
Yoshibumi Nakahara
Joint association of milk intake and blood 25(OH)D levels with fracture risk in postmenopausal women: 20-year follow-up data from the Japanese Population-Based Osteoporosis cohort study
- DOI:
10.1007/s00198-025-07577-z - 发表时间:
2025-06-23 - 期刊:
- 影响因子:5.400
- 作者:
Kuniyasu Kamiya;Akane Kojima;Takahiro Tachiki;Nami Imai;Katsuyasu Kouda;Masami Hamada;Asako Kudo;Kouji Tsuda;Akiko Hata;Kumiko Ohara;Naoyuki Takashima;Yuho Sato;Miho Tanaka;Jun Kitagawa;Kazuhiro Uenishi;Junko Tamaki;Etsuko Kajita;Sadanobu Kagamimori;Toshio Matsumoto;Masayuki Iki - 通讯作者:
Masayuki Iki
Conditions for existence of single valued optimal transport maps on convex boundaries with nontwisted cost
具有非扭曲成本的凸边界上单值最优传输图的存在条件
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Seonghyeon Jeong;Jun Kitagawa - 通讯作者:
Jun Kitagawa
LDL Cholesterol Level Correlate with Urinary Deoxypyridinoline in Pre-Menopausal Japanese Women
- DOI:
10.1016/j.jocd.2010.01.029 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yukiko Kihara;Jun Kitagawa;Mizuho Nagata;Naonobu Takahira - 通讯作者:
Naonobu Takahira
2012年10月23日X1.8フレアに伴った白色光放射と粒子加速
2012 年 10 月 23 日与 X1.8 耀斑相关的白光辐射和粒子加速
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kyoko Watanabe;Toshifumi Shimizu;Shinsuke Imada;Jun Kitagawa;Satoshi Masuda;Kyoko Watanabe;渡邉恭子 - 通讯作者:
渡邉恭子
Jun Kitagawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Kitagawa', 18)}}的其他基金
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Regularity and Partial Regularity for Monge-Ampere-Type Equations, with Applications to Numerics
Monge-Ampere 型方程的正则性和偏正则性及其在数值中的应用
- 批准号:
1700094 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Research on mathematical expressions and numerical methods of optimal hedging strategies for stochastic volatility models
随机波动率模型最优对冲策略的数学表达式和数值方法研究
- 批准号:
18K03422 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Optimal hedging strategies and its numerical methods under the incomplete markets
不完全市场下的最优对冲策略及其数值方法
- 批准号:
17K13764 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Numerical Methods For Liquid Crystals And Their Optimal Design
职业:液晶数值方法及其优化设计
- 批准号:
1555222 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual