Free-Model Based Intelligent Control of Power Plants and Power Systems
基于自由模型的发电厂和电力系统智能控制
基本信息
- 批准号:9705105
- 负责人:
- 金额:$ 23.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-01-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ECS-9705105 Lee This project is to develop a Free-Model Based Intelligent Control (FMBIC) system for power plants and power systems. Automation of normal power plant operation is currently achieved in a simple and direct manner using single-loop feedback and feedforward controls based on linearized models of plant subsystems. In this environment, controlling a system is very difficult when there are plant or controller failures or a significant variation in operating conditions. The proposed free-model based intelligent control approach offers an alternative in achieving highly autonomous power plants and power systems. Current main streams for intelligent control are fuzzy logic and artificial neural networks. Both attempt to emulate human control schemes by incorporating human decision making and learning ability. However, they alone can not emulate humans perfectly. Therefore, it is proposed to develop a new approach based on the "free model" concept, which will help in modeling human behavior more closely. The free model is defined only with input and output data obtained from the system and consequently, no mathematical model is required for control purposes. Thus, it can be used for any system which is complex, highly nonlinear, and susceptible to disturbances, such as power plants and power systems. By representing a system in terms of the free model, human control schemes will be modeled in five different areas: (1) human learning ability will be emulated on the premise of the free model using neural networks and fuzzy systems; (2) a supervisory control system will be developed to emulate human supervisory ability using a bank of controllers in parallel; (3) a decentralized control scheme will be developed by partitioning a complex system into a number of smaller subsystems which are coupled by interaction variables; (4) a predictive control scheme will be developed by adding an optimizing feedforward control; and (5) a fault-accommodating control system will be devel oped by using the free-model based neuro or fuzzy identifier. This research an the Free-Model Based Intelligent Control (FMBIC) will be conducted at Penn State University as a regular project. In order to enrich the project and enhance the progress of the research, it is also proposed to add an international dimension by collaborating with Seoul National University (SNU), Seoul, Korea through the U.S.-Korea Cooperative Research Program. This will enable the Principal Investigator and a graduate student to visit SNU and exchange research results and experiences with the Korean counterpart. The theoretical and implementation aspects of this collaboration will be of benefit both to Penn State University and Seoul National University, as well as to the U.S. and Korea power industries, in general. The anticipated scientific and practical benefits are: (1) sharing of laboratory facilities and theoretical developments in the Free-Model Based Intelligent Control (FMBIC) system; (2) joining of complementary skills: Penn State's experience in power plant intelligent distributed control and SNU's experience in power system intelligent control; (3) providing new insights and improvements to power engineering education in the U.S. and Korea; and (4) development of intelligent control technology providing improved efficiency, economy, and safety of power plants and power systems in the face of future deregulation and plant construction difficulties in both countries.
该项目是为发电厂和电力系统开发基于自由模型的智能控制(FMBIC)系统。目前,利用基于电厂子系统线性化模型的单环反馈和前馈控制,以简单直接的方式实现电厂正常运行的自动化。在这种环境下,当设备或控制器发生故障或运行条件发生重大变化时,控制系统是非常困难的。提出的基于自由模型的智能控制方法为实现高度自治的电厂和电力系统提供了另一种选择。目前智能控制的主流是模糊逻辑和人工神经网络。两者都试图通过结合人类的决策和学习能力来模仿人类的控制方案。然而,它们本身并不能完美地模仿人类。因此,提出了一种基于“自由模型”概念的新方法,这将有助于更紧密地建模人类行为。自由模型仅使用从系统获得的输入和输出数据来定义,因此,不需要用于控制目的的数学模型。因此,它可以用于任何复杂的、高度非线性的、易受干扰的系统,如发电厂和电力系统。通过用自由模型来表示一个系统,人类控制方案将在五个不同的领域建模:(1)在自由模型的前提下,使用神经网络和模糊系统来模拟人类的学习能力;(2)将开发一个监控系统,使用一组并行控制器来模拟人类的监督能力;(3)将一个复杂的系统划分为若干较小的子系统,这些子系统通过相互作用变量耦合,从而形成分散的控制方案;(4)加入最优前馈控制,形成预测控制方案;(5)采用基于自由模型的神经或模糊辨识器,建立自适应控制系统。这项基于自由模型的智能控制(FMBIC)的研究将作为一个常规项目在宾夕法尼亚州立大学进行。为了丰富项目内容和提高研究进展,还提议通过美韩合作研究项目与韩国首尔国立大学(SNU)合作,增加国际维度。这将使首席研究员和一名研究生访问首尔大学,并与韩国同行交流研究成果和经验。此次合作的理论和实施方面将有利于宾夕法尼亚州立大学和首尔国立大学,以及美国和韩国的电力行业。预期的科学和实际效益是:(1)共享实验室设施和基于自由模型的智能控制(FMBIC)系统的理论发展;(2)互补技能的加入:宾夕法尼亚州立大学在电厂智能分布式控制方面的经验与首尔国立大学在电力系统智能控制方面的经验;(3)为美国和韩国的电力工程教育提供新的见解和改进;(4)发展智能控制技术,提高电厂和电力系统的效率、经济性和安全性,以应对未来两国放松管制和电厂建设的困难。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kwang Lee其他文献
Method development for direct detection of glycoproteins on aminophenylboronic acid functionalized self-assembled monolayers by matrix-assisted laser desorption/ionization mass spectrometry.
通过基质辅助激光解吸/电离质谱法直接检测氨基苯硼酸功能化自组装单层上的糖蛋白的方法开发。
- DOI:
10.1002/rcm.4288 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
K. Jang;Young Hye Kim;Kwang Lee;I. Choi;Soo;Kyung - 通讯作者:
Kyung
Cytokines and Cancer Immunotherapy
细胞因子和癌症免疫疗法
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:2.8
- 作者:
S. Wolf;Kwang Lee;H. Swiniarski;M. O'toole;K. Sturmhoefel - 通讯作者:
K. Sturmhoefel
Design of High Frequency Boosting Circuits Compensating for Hearing Loss
补偿听力损失的高频升压电路设计
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kwang Lee;Young - 通讯作者:
Young
Constraints on the subsecond modulation of striatal dynamics by physiological dopamine signaling.
通过生理多巴胺信号传导对纹状体动力学亚秒调节的限制。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:25
- 作者:
Charltien Long;Kwang Lee;Long Yang;Theresia Dafalias;Alexander K Wu;S. Masmanidis - 通讯作者:
S. Masmanidis
Status of Neurocritical Care in Korea: A Nationwide Questionnaire Survey
韩国神经重症监护现状:全国问卷调查
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hong;B. Lee;Jun Hong Lee;Kwang Lee;S. Whang - 通讯作者:
S. Whang
Kwang Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kwang Lee', 18)}}的其他基金
Multi-Agent System Based Intelligent Distributed Control System for Power Plants
基于多Agent系统的发电厂智能集散控制系统
- 批准号:
0801440 - 财政年份:2008
- 资助金额:
$ 23.68万 - 项目类别:
Continuing Grant
Development of System-Type Neural Network Architectures for Distributed Parameter Systems Using Algebraic Decomposition
使用代数分解开发分布式参数系统的系统型神经网络架构
- 批准号:
0758385 - 财政年份:2007
- 资助金额:
$ 23.68万 - 项目类别:
Continuing grant
Development of System-Type Neural Network Architectures for Distributed Parameter Systems Using Algebraic Decomposition
使用代数分解开发分布式参数系统的系统型神经网络架构
- 批准号:
0501305 - 财政年份:2005
- 资助金额:
$ 23.68万 - 项目类别:
Continuing Grant
NSF-CGP Fellowship: Development of Power System Intelligent Coordinated Control
NSF-CGP 奖学金:电力系统智能协调控制的发展
- 批准号:
9605028 - 财政年份:1997
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
The International Conference on Power System Technology (ICPST), Beijing, China during October 17-21, 1994
国际电力系统技术会议 (ICPST),中国北京,1994 年 10 月 17-21 日
- 批准号:
9424319 - 财政年份:1994
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Research: Intelligent Distributed Control for Power Plants and Power Systems
美韩合作研究:发电厂和电力系统的智能分布式控制
- 批准号:
9223030 - 财政年份:1993
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Research and Curriculum Development for Power Plant Intelligent Distributed Control
电厂智能集散控制研究与课程开发
- 批准号:
9212132 - 财政年份:1992
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Short-term Visit to Korea to Finalize a Proposal, September 1991
1991 年 9 月对韩国进行短期访问以敲定一项提案
- 批准号:
9113050 - 财政年份:1991
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
1989 US-Korea Seminar on Application of Expert Systems to Power Systems and Industries, Seoul, Korea, August 14-21, 1989
1989 年美韩专家系统在电力系统和工业中的应用研讨会,韩国首尔,1989 年 8 月 14 日至 21 日
- 批准号:
8910530 - 财政年份:1989
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Research on New Technique for Optimization of Long-Term Power System Expansion Planning
美韩合作研究电力系统长期扩建规划优化新技术
- 批准号:
8617329 - 财政年份:1987
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Model-free theory of finance based on game-theoretic probability
基于博弈论概率的无模型金融理论
- 批准号:
21K18585 - 财政年份:2021
- 资助金额:
$ 23.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A Q-learning based model-free wide-area damping control under GPS spoofing attacks
GPS欺骗攻击下基于Q学习的无模型广域阻尼控制
- 批准号:
560831-2020 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Alliance Grants
Agent-based model calibration using likelihood-free inference
使用无似然推理的基于代理的模型校准
- 批准号:
2438224 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Studentship
CAREER: The Production of High Value, Defect-free Metal Castings through Model-based Design and Additive Manufacturing of Sand Molds
职业:通过基于模型的设计和砂型增材制造生产高价值、无缺陷的金属铸件
- 批准号:
1944120 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
Disclination-based crystal plasticity model and mess-free analysis at large deformation for strengthening of LPSO/Mg alloys
基于向错的晶体塑性模型和大变形无混乱分析用于强化 LPSO/Mg 合金
- 批准号:
20K04165 - 财政年份:2020
- 资助金额:
$ 23.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on decision-making and reinforcement learning in animal model of gambling disorder using a mixture of model-free and model-based reinforcement learning task
使用无模型和基于模型的强化学习任务混合的赌博障碍动物模型中的决策和强化学习研究
- 批准号:
19K21811 - 财政年份:2019
- 资助金额:
$ 23.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Sedimentation from forced wall jets versus free gravity flows: integrating tank experiments and field data into a physics-based depositional model
强制壁射流与自由重力流的沉积:将储罐实验和现场数据集成到基于物理的沉积模型中
- 批准号:
407609989 - 财政年份:2018
- 资助金额:
$ 23.68万 - 项目类别:
Research Grants
Development of high-fidelity numerical model for compressible free-interface multiphase flows based on BVD principle
基于BVD原理的可压缩自由界面多相流高保真数值模型的开发
- 批准号:
18H01366 - 财政年份:2018
- 资助金额:
$ 23.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Model-Free Classification of Collective Behavior Based on Automated Detection of Symmetry from Video Data
EAGER:基于视频数据对称性自动检测的集体行为的无模型分类
- 批准号:
1708622 - 财政年份:2017
- 资助金额:
$ 23.68万 - 项目类别:
Standard Grant
A novel behavioral task for investigating a mixture of model-free and model-based reinforcement learning in rodents
一种新颖的行为任务,用于研究啮齿动物中无模型和基于模型的强化学习的混合
- 批准号:
16K13505 - 财政年份:2016
- 资助金额:
$ 23.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research