Symbolic Computation and Hopf Algebras
符号计算和 Hopf 代数
基本信息
- 批准号:9705132
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT, NICHOLS 97-05132 Professor Nichols plans to continue to study fundamental questions about Hopf algebras. He will develop and bring to bear techniques of symbolic computation to attack some of these questions. Several of the specific questions about Hopf algebras that Professor Nichols plans to investigate are related by their connection with Yetter-Drinfel'd modules. With the goal of proving Kaplansky's conjecture that the degree of an absolutely irreducible representation of a semisimple Hopf algebra divides the dimension of the Hopf algebra, Professor Nichols, in joint work with Bettina Richmond, has been studying the Grothendieck algebra of a Hopf algebra. Information about how certain Yetter-Drinfel'd modules multiply should help resolve a conjecture which is a key part of that program. A quite different investigation involves computations of bialgebras which are completely determined by Yetter-Drinfel'd modules of finite groups. Even when the groups are small, these can be extremely complicated. The algebra/coalgebra interaction in Yetter-Drinfel'd modules is considerably easier to understand than is the corresponding interaction in the Hopf algebra itself, yet it is rich enough to shed a great deal of light on the Hopf algebra structure. Its elucidation in this situation should be quite instructive. Hopf algebras and symbolic computation are both areas of growing interest, areas which cross fields in mathematics, and areas which are very important outside mathematics as well. Hopf algebras are useful in the type of knot theory that is of interest to molecular chemists. Certain types of Hopf algebras are now referred to as "quantum groups", in recognition of their applications in physics. Symbolic computation is part of a key technology, namely, scientific and engineering computation, that is becoming increasingly important to science, technology, and society. It is leading to dramatic changes in the theory and practice of mathematics. There are good reasons to expect a synergistic relationship between investigations in Hopf algebras and symbolic computation. Hopf algebra arguments often involve complicated symbolic calculations which are quite similar to ones which (in the commutative case) can now be done very effectively by machine. In the other direction, Hopf algebra ideas help to explain and organize computations. Hopf algebras provide a challenging setting in which to develop computational methods, but the very structure that causes the scarcity of simplifying relations helps to keep track of the ones that exist. It is expected that the insights gained in exploiting this Hopf structure will contribute to the wider goal of advancing symbolic computation.
摘要:NICHOLS教授计划继续研究Hopf代数的基本问题。他将发展并运用符号计算技术来解决其中的一些问题。Nichols教授计划研究的关于Hopf代数的几个具体问题与Yetter-Drinfel模块的联系有关。为了证明Kaplansky关于半简单Hopf代数的绝对不可约表示的度可以划分Hopf代数的维数的猜想,Nichols教授与Bettina Richmond共同研究了Hopf代数的Grothendieck代数。关于某些yeter - drinfel模块如何相乘的信息应该有助于解决一个猜想,这是该程序的关键部分。一个完全不同的研究涉及双代数的计算,它们完全由有限群的yeter - drinfel模决定。即使小组很小,这些也可能非常复杂。Yetter-Drinfel'd模块中的代数/协代数相互作用比Hopf代数本身中的相应相互作用要容易理解得多,但它足够丰富,足以揭示Hopf代数结构的大量信息。在这种情况下对它的说明应该是很有启发性的。Hopf代数和符号计算都是人们越来越感兴趣的领域,它们是数学中的交叉领域,也是数学之外非常重要的领域。Hopf代数在分子化学家感兴趣的结理论中很有用。某些类型的霍普夫代数现在被称为“量子群”,以表彰它们在物理学中的应用。符号计算是科学和工程计算这一关键技术的一部分,在科学、技术和社会中发挥着越来越重要的作用。它正在导致数学理论和实践的巨大变化。有很好的理由期望在霍普夫代数和符号计算的研究之间的协同关系。Hopf代数参数通常涉及复杂的符号计算,这与现在机器可以非常有效地完成(在交换情况下)的符号计算非常相似。在另一个方向上,霍普夫代数的思想有助于解释和组织计算。Hopf代数为开发计算方法提供了一个具有挑战性的环境,但是导致简化关系稀缺的结构有助于跟踪存在的关系。期望在利用这种Hopf结构中获得的见解将有助于推进符号计算的更广泛目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Nichols其他文献
On the heights of prime ideals under integral extensions
- DOI:
10.1007/bf01197970 - 发表时间:
1989-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Robert Gilmer;Budh Nashier;Warren Nichols - 通讯作者:
Warren Nichols
Generators of ideals containing monies
- DOI:
10.1007/bf01194098 - 发表时间:
1987-11-01 - 期刊:
- 影响因子:0.500
- 作者:
Robert Gilmer;Budh Nashier;Warren Nichols - 通讯作者:
Warren Nichols
On Steinitz properties
- DOI:
10.1007/bf01196854 - 发表时间:
1991-09-01 - 期刊:
- 影响因子:0.500
- 作者:
Budh Nashier;Warren Nichols - 通讯作者:
Warren Nichols
A note on perfect rings
- DOI:
10.1007/bf02568380 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Budh Nashier;Warren Nichols - 通讯作者:
Warren Nichols
Warren Nichols的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Nichols', 18)}}的其他基金
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9722856 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Research Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Research Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
- 批准号:
2339193 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
- 批准号:
DE240100846 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Discovery Early Career Researcher Award