Set-Membership Adaptive Filtering for High Performance Communication Systems
高性能通信系统的集合成员自适应过滤
基本信息
- 批准号:9705173
- 负责人:
- 金额:$ 15.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to the existence of fast fading and co-channel interference in wireless communications systems, the problems of adaptive equalization and interference suppression call for solutions that are beyond the reach of conventional schemes, e.g., those based on least squares and least-mean-squares. This research project is applying novel adaptive signal processing techniques, referred to as Set- Membership Adaptive Recursive Techniques (SMART), to resolve critical problems that arise in advanced communications systems. The novelty of SMART stems from the following: (1) Their outcomes always satisfy a prescribed instantaneous bound on the magnitude of the estimation error, which in adaptive equalization, is the difference between the desired output and the filtered output. (2) They are characterized through a feasible set of parameters, which meet the specification without requiring the existence of a true parameter. (3) They update parameter estimates selectively depending on the innovation of the input data. This feature leads to an adaptor sharing paradigm that significantly improves the cost-effectiveness and data usage efficiency in adaptive signal processing. In simulation studies, SMART have exhibited superior performance and lower computational complexity in applications such as adaptive equalization and interference cancellation. More generally, this project will establish a sound theoretical foundation for Set-Membership Adaptive Filtering (SMAF), and explore the use of SMART in those applications where performance requirements may exceed what traditional algorithms can offer, e.g., modern multiple access communication systems. We anticipate that this research will advance the state-of-the-art in adaptive filtering, both theoretically and practically, and significantly enhance the performance of modern wireless communication systems.
由于在无线通信系统中存在快速衰落和同信道干扰,自适应均衡和干扰抑制的问题需要常规方案无法达到的解决方案,例如,基于最小二乘和最小均方的方法。 该研究项目应用新的自适应信号处理技术,称为集成员自适应递归技术(SMART),以解决先进通信系统中出现的关键问题。 SMART的新奇源于以下:(1)它们的结果总是满足估计误差幅度的规定瞬时界限,在自适应均衡中,估计误差是期望输出和滤波输出之间的差。 (2)它们通过一组可行的参数来表征,这些参数满足规范而不需要存在真实参数。 (3)它们根据输入数据的创新有选择地更新参数估计。 该特征导致适配器共享范例,其显著提高了自适应信号处理中的成本效益和数据使用效率。 在仿真研究中,SMART在自适应均衡和干扰消除等应用中表现出上级性能和较低的计算复杂度。 更一般地说,这个项目将建立一个良好的理论基础集成员自适应滤波(SMAF),并探讨使用SMART在这些应用程序的性能要求可能超过传统算法可以提供,例如,现代多址通信系统。 我们预期,这项研究将推进国家的最先进的自适应滤波,在理论和实践中,并显着提高现代无线通信系统的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yih-Fang Huang其他文献
A recursive estimation algorithm using selective updating for spectral analysis and adaptive signal processing
- DOI:
10.1109/tassp.1986.1164931 - 发表时间:
1986-10 - 期刊:
- 影响因子:0
- 作者:
Yih-Fang Huang - 通讯作者:
Yih-Fang Huang
Statistical Signal Processing
- DOI:
10.1016/b978-012170960-0/50066-9 - 发表时间:
2005 - 期刊:
- 影响因子:2.5
- 作者:
Yih-Fang Huang - 通讯作者:
Yih-Fang Huang
INTRODUCTION TO SIGNAL PROCESSING
- DOI:
10.1016/b978-012170960-0/50060-8 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Yih-Fang Huang - 通讯作者:
Yih-Fang Huang
Optimal Set-Membership Filtering Using an Adaptive Minimax Algorithm with Automatic Bound Tuning
- DOI:
10.1016/s1474-6670(17)39865-8 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:
- 作者:
Sridhar Gollamudi;Shirish Nagaraj;Yih-Fang Huang - 通讯作者:
Yih-Fang Huang
Yih-Fang Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yih-Fang Huang', 18)}}的其他基金
Graduate Student Travel Support for APSIPA ASC 2018. To Be Held in Honolulu, Hawaii Convention Center, November 12-15, 2018.
APSIPA ASC 2018 研究生旅行支持。将于 2018 年 11 月 12 日至 15 日在夏威夷檀香山会议中心举行。
- 批准号:
1840824 - 财政年份:2018
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
Collaborative Research: Implementation and Evaluation of a Sustainable Computer-Based Tutoring System for Introductory Linear Circuit Analysis
合作研究:基于可持续计算机的线性电路分析入门辅导系统的实施和评估
- 批准号:
1323397 - 财政年份:2013
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
An Information-Intelligent Recursive Estimation for AdaptiveSignal Processing Networks
自适应信号处理网络的信息智能递归估计
- 批准号:
8711174 - 财政年份:1987
- 资助金额:
$ 15.36万 - 项目类别:
Continuing Grant
Research Initiation: A Time-Sharing Estimation, Algorithm for Adaptive Signal Processing Using a Convex Set- Theoretic Approach
研究启动:使用凸集理论方法的分时估计、自适应信号处理算法
- 批准号:
8505218 - 财政年份:1985
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345652 - 财政年份:2024
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345651 - 财政年份:2024
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
IENgine: developing a subscription-based membership application to connect live/location-based immersive experience, (LIE) creatives with employers.
IENgine:开发基于订阅的会员应用程序,将基于实时/位置的沉浸式体验 (LIE) 创意人员与雇主联系起来。
- 批准号:
ES/Y011104/1 - 财政年份:2024
- 资助金额:
$ 15.36万 - 项目类别:
Research Grant
Australian Membership of the International Ocean Discovery Program 2023-24
2023-24 年国际海洋发现计划澳大利亚会员资格
- 批准号:
LE230100044 - 财政年份:2023
- 资助金额:
$ 15.36万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Bristol24/7 membership engine
Bristol24/7 会员引擎
- 批准号:
10065626 - 财政年份:2023
- 资助金额:
$ 15.36万 - 项目类别:
Collaborative R&D
MemberGuard: Protecting Machine Learning Privacy from Membership Inference
MemberGuard:保护机器学习隐私免受成员资格推断
- 批准号:
DP220102784 - 财政年份:2022
- 资助金额:
$ 15.36万 - 项目类别:
Discovery Projects
CSR: Medium: Approximate Membership Query Data Structures in Computational Biology and Storage
CSR:中:计算生物学和存储中的近似成员资格查询数据结构
- 批准号:
2317838 - 财政年份:2022
- 资助金额:
$ 15.36万 - 项目类别:
Continuing Grant
Collaborative Research: United States University CLOUD (Cosmics Leaving OUtdoor Droplets) Consortium Membership
合作研究:美国大学 CLOUD(宇宙留下户外水滴)联盟成员
- 批准号:
2215489 - 财政年份:2022
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
Collaborative Research: United States University CLOUD (Cosmics Leaving OUtdoor Droplets) Consortium Membership
合作研究:美国大学 CLOUD(宇宙留下户外水滴)联盟成员
- 批准号:
2215527 - 财政年份:2022
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant
Collaborative Research: United States University CLOUD (Cosmics Leaving OUtdoor Droplets) Consortium Membership
合作研究:美国大学 CLOUD(宇宙留下户外水滴)联盟成员
- 批准号:
2215522 - 财政年份:2022
- 资助金额:
$ 15.36万 - 项目类别:
Standard Grant