Naturally Nanostructured Epitaxial Semiconductors

天然纳米结构外延半导体

基本信息

项目摘要

9705440 Gibson This FRG/GOALI proposal addresses basic materials science and engineering issues in a collaborative program between the University of Illinois and Hewlett-Packard Laboratories to understand fundamental phenomena and interactions associated with naturally nanostructured epitaxial semiconductors. Goals of the project are to obtain semiconductor epitaxial nanostructures smaller than feasible via lithography, and to examine their applications to novel devices; strain-induced self organization and kinetically driven pattern formation are two approaches being taken to achieve naturally nanostructured materials. The joint activities include staff exchange with graduate students spending time at H-P, and with additional staff exchange between U. IL and H-P personnel. The proposed research emphasizes understanding of fundamental mechanisms and processes along with exploration of advanced device technology. %%% The project addresses forefront materials science research issues in a topical area of materials science having high technological relevance. The research will contribute basic materials science knowledge at a fundamental level to important aspects of electronic/photonic devices and integrated circuitry, in general. Additionally, the fundamental knowledge and understanding gained from the research is expected to contribute to improving the performance of advanced devices and circuits by providing a fundamental understanding and a basis for designing and producing improved materials and structures for the quantum mechanical devices of the future. An important feature of the program is the integration of research and education through the training of students in a fundamentally and technologically significant area, and with the benefit of teaming with industrial research staff, and exposure to industrial facilities, equipment and approaches. ***
这项FRG/GOALI提案在伊利诺伊大学和惠普实验室之间的合作项目中解决了基础材料科学和工程问题,以了解与天然纳米结构外延半导体相关的基本现象和相互作用。该项目的目标是通过光刻技术获得比可行的更小的半导体外延纳米结构,并研究其在新型器件中的应用;应变诱导的自组织和动力学驱动的模式形成是实现自然纳米结构材料的两种方法。这些联合活动包括与在惠普工作的研究生进行人员交流,以及在美国和惠普员工之间进行额外的人员交流。建议的研究强调对基本机制和过程的理解以及对先进设备技术的探索。该项目涉及材料科学领域的前沿材料科学研究问题,具有很高的技术相关性。总的来说,这项研究将为电子/光子器件和集成电路的重要方面提供基础材料科学知识。此外,从研究中获得的基本知识和理解预计将有助于提高先进器件和电路的性能,为未来量子力学器件的设计和生产改进的材料和结构提供基本的理解和基础。该计划的一个重要特点是通过在基础和技术重要领域培训学生,并与工业研究人员合作,并接触工业设施,设备和方法,将研究和教育结合起来。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Murray Gibson其他文献

The Importance of Averaging to Interpret Electron Correlographs of Disordered Materials
平均对于解释无序材料电子相关图的重要性
  • DOI:
    10.1017/s1431927613014116
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    T. Sun;M. Treacy;Tian T Li;N. Zaluzec;J. Murray Gibson
  • 通讯作者:
    J. Murray Gibson
Visualization of Dynamic Near-Surface Processes
  • DOI:
    10.1557/s0883769400036745
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Ray D. Twesten;J. Murray Gibson;Frances M. Ross
  • 通讯作者:
    Frances M. Ross

J. Murray Gibson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Murray Gibson', 18)}}的其他基金

Acquisition of a Field-Emission Energy-Filtering Transmission Electron Microscope for Materials Research
购买用于材料研究的场发射能量过滤透射电子显微镜
  • 批准号:
    9871119
  • 财政年份:
    1998
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Standard Grant
GOALI: Atomic Correlations in Disordered Materials Observed using Variable Coherence Transmission Electron Microscopy
GOALI:使用可变相干透射电子显微镜观察无序材料中的原子相关性
  • 批准号:
    9703906
  • 财政年份:
    1997
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Standard Grant
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
  • 批准号:
    2335588
  • 财政年份:
    2024
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Standard Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
  • 批准号:
    DE240100917
  • 财政年份:
    2024
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Standard Grant
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W022451/1
  • 财政年份:
    2023
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Research Grant
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
  • 批准号:
    23H00234
  • 财政年份:
    2023
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Nanostructured Silicon-Based Wearable and Implantable Biosensors
纳米结构硅基可穿戴和植入式生物传感器
  • 批准号:
    FL220100185
  • 财政年份:
    2023
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Australian Laureate Fellowships
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
  • 批准号:
    10602823
  • 财政年份:
    2023
  • 资助金额:
    $ 108.92万
  • 项目类别:
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W024284/1
  • 财政年份:
    2023
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Research Grant
Development of Nanostructured Scaffolds for Stem Cell Culture to Directly Regulate Cellular Functions via Natural Polysaccharide Nanofibers
开发用于干细胞培养的纳米结构支架,通过天然多糖纳米纤维直接调节细胞功能
  • 批准号:
    23H00345
  • 财政年份:
    2023
  • 资助金额:
    $ 108.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了