Further Investigation of the Nonlinear Rescaling Principle in Constrained Optimization
约束优化中非线性缩放原理的进一步研究
基本信息
- 批准号:9705672
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9705672 Polyak ABSTRACT The main purpose of this proposal is to develop new aspects of the Nonlinear Rescaling (NR) theory and new methods, that are based on this theory, for solving constrained optimization problems. Developing software, which will take into account the special structure of unconstrained optimization problems typical for the NR approach is our second goal. Solving real world large scale nonlinear optimization problems is our third main target. The ability to solve large scale nonlinear optimization problems is critical in mechanics, structural engineering, optimal control, tomography, image recognition, power system optimization, and economics, to mention a few. Recently the NR type methods have been used with great success for solving very complex Truss Topology Design (TTD) problems. The TTD problems arise in structural optimization, in particular, in creating bridges, cantilevers, and inner skeletons of airplane wings capable of carrying external loads under different loading scenarios. Funding a structure, which is able to withstand external forces, have certain characteristics of rigidity and at the same time to have minimal cost is a typical large scale nonlinear constrained optimization problem. Our research is aimed to find efficient methods for solving such problems.
9705672 Polyak摘要这项建议的主要目的是发展非线性重定标(NR)理论的新方面和基于该理论的求解约束优化问题的新方法。我们的第二个目标是开发软件,它将考虑到NR方法典型的无约束优化问题的特殊结构。解决现实世界中的大规模非线性优化问题是我们的第三个主要目标。解决大规模非线性优化问题的能力在力学、结构工程、最优控制、层析成像、图像识别、电力系统优化和经济等领域都是至关重要的。近年来,NR型方法被用于解决非常复杂的桁架拓扑设计(TTD)问题,取得了巨大的成功。TTD问题出现在结构优化中,特别是在制造能够在不同加载情况下承载外部载荷的机翼的桥梁、悬臂和内骨架时。一个既能承受外力,又具有一定的刚性,同时又能使造价最小的结构,是一个典型的大规模非线性约束优化问题。我们的研究就是为了找到解决这类问题的有效方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Polyak其他文献
Finding Equilibrium in Some Economics and Game Models
- DOI:
10.1007/s10957-025-02787-1 - 发表时间:
2025-07-26 - 期刊:
- 影响因子:1.500
- 作者:
Igor Griva;Roman Polyak - 通讯作者:
Roman Polyak
Roman Polyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Polyak', 18)}}的其他基金
SGER: Linear Optimization vs. Nonlinear Equilibrium
SGER:线性优化与非线性平衡
- 批准号:
0836338 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
ITR: Collaborative Research: New Directions in Predictive Learning: Rigorous Learning Machines
ITR:协作研究:预测学习的新方向:严格的学习机器
- 批准号:
0324999 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: A Proposal for Further Investigation of Modified Barrier Function Methods for Linear and NonLinear Programming
数学科学:进一步研究线性和非线性规划的修正势垒函数方法的建议
- 批准号:
9300962 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Investigation of modified water vibration by surrounding molecules via operand nonlinear optical response
通过操作数非线性光学响应研究周围分子改变的水振动
- 批准号:
23K19257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation on nonlinear response mechanisms through direct simultaneous measurement of flow field and stress field in dense particle suspension
通过直接同时测量致密颗粒悬浮液中的流场和应力场研究非线性响应机制
- 批准号:
23K17729 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigation of nonlinear behavior in an electric and non-Newtonian jet in an air crossflow
研究空气横流中电动和非牛顿射流的非线性行为
- 批准号:
23H01746 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Comprehensive Investigation of Nonlinear Shock-Induced Flutter in High-Speed Flows
高速流动中非线性冲击引起的颤振的综合研究
- 批准号:
2341192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Experimental Investigation of Nonlinear Combustion Dynamics and Instabilities in Gas Turbine Combustors at Flight-Relevant Conditions
飞行相关条件下燃气轮机燃烧室非线性燃烧动力学和不稳定性的实验研究
- 批准号:
545915-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Synthesis and investigation of novel magneto-optical organic materials for applications in nonlinear optics and sensing.
用于非线性光学和传感应用的新型磁光有机材料的合成和研究。
- 批准号:
545856-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Synthesis and investigation of novel magneto-optical organic materials for applications in nonlinear optics and sensing.
用于非线性光学和传感应用的新型磁光有机材料的合成和研究。
- 批准号:
545856-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Experimental Investigation of Nonlinear Combustion Dynamics and Instabilities in Gas Turbine Combustors at Flight-Relevant Conditions
飞行相关条件下燃气轮机燃烧室非线性燃烧动力学和不稳定性的实验研究
- 批准号:
545915-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Investigation of the nonlinear relaxation of electrophoresis phenomenon by ultra-high sensitive laser using self-mixing laser
利用自混合激光研究超高灵敏激光电泳现象的非线性弛豫
- 批准号:
21K03492 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on a general nonlinear control based on mapping learning with controllability and reachability
基于映射学习的可控可达非线性控制研究
- 批准号:
21H03518 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




