SGER: Linear Optimization vs. Nonlinear Equilibrium
SGER:线性优化与非线性平衡
基本信息
- 批准号:0836338
- 负责人:
- 金额:$ 14.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: ID: CCF - 0836338 Title: SGER: Linear Optimization vs. Nonlinear Equilibrium PI: Polyak, Roman A.Inst: George Mason University ABSTRACT:An innovative idea for reformulating the standard linear programming problem by taking into account more realistic scenarios from market economics is being considered in this proposal. The standard linear programming formulation of resource allocation problem assumes that the cost of a commodity is independent of the level of production. As one knows this is not the case in reality. By making the cost a function of the production, the PI formulates the problem in more general terms. However, under some natural but simplifying assumptions (which are somewhat technical to describe) on the nature of the cost function, the solution complexity of the problem turns out to be lower than the worst case complexity of the solution to the standard linear programming problem. In fact, there are indications that an O(n^2) solution can be obtained in this nonstandard formulation by the PI. This is paradoxical in some sense (that a more general problem has a simpler solution!), but apparently not so because for the LP formulation the geometry of the feasible set is a polytope, whereas its is a much simpler region under the new formulation of the problem. Also, the new formulation has close ties with the theory of n- person games.
提案:身份证号:CCF - 0836338标题:SGER:线性优化与非线性均衡PI:Polyak,Roman A.Inst:乔治梅森大学摘要:本提案考虑了一个创新的想法,通过考虑市场经济学中更现实的场景来重新制定标准线性规划问题。资源配置问题的标准线性规划公式假设商品的成本与生产水平无关。正如人们所知道的那样,事实并非如此。通过使成本成为生产的函数,PI用更一般的术语来表述问题。然而,在一些自然但简化的假设下(描述起来有些技术性),这个问题的解决方案的复杂性比标准线性规划问题的解决方案的最坏情况的复杂性要低。实际上,有迹象表明PI可以在这个非标准公式中获得O(n^2)解。这在某种意义上是矛盾的(更一般的问题有更简单的解决方案!),但显然不是这样,因为对于LP公式化,可行集的几何形状是多面体,而在问题的新公式化下,它是一个简单得多的区域。同时,新的表述与多人对策理论有着密切的联系.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Polyak其他文献
Finding Equilibrium in Some Economics and Game Models
- DOI:
10.1007/s10957-025-02787-1 - 发表时间:
2025-07-26 - 期刊:
- 影响因子:1.500
- 作者:
Igor Griva;Roman Polyak - 通讯作者:
Roman Polyak
Roman Polyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Polyak', 18)}}的其他基金
ITR: Collaborative Research: New Directions in Predictive Learning: Rigorous Learning Machines
ITR:协作研究:预测学习的新方向:严格的学习机器
- 批准号:
0324999 - 财政年份:2003
- 资助金额:
$ 14.48万 - 项目类别:
Continuing Grant
Further Investigation of the Nonlinear Rescaling Principle in Constrained Optimization
约束优化中非线性缩放原理的进一步研究
- 批准号:
9705672 - 财政年份:1997
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
Mathematical Sciences: A Proposal for Further Investigation of Modified Barrier Function Methods for Linear and NonLinear Programming
数学科学:进一步研究线性和非线性规划的修正势垒函数方法的建议
- 批准号:
9300962 - 财政年份:1993
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2022
- 资助金额:
$ 14.48万 - 项目类别:
Discovery Grants Program - Individual
Reduced Computations for Large-Scale Optimization Problems with Linear Structures
减少线性结构大规模优化问题的计算量
- 批准号:
563385-2021 - 财政年份:2021
- 资助金额:
$ 14.48万 - 项目类别:
University Undergraduate Student Research Awards
Optimization of General Linear Time-Marching Methods
一般线性时间推进方法的优化
- 批准号:
561878-2021 - 财政年份:2021
- 资助金额:
$ 14.48万 - 项目类别:
University Undergraduate Student Research Awards
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2021
- 资助金额:
$ 14.48万 - 项目类别:
Discovery Grants Program - Individual
Discrete convex approximation on non-linear discrete optimization
非线性离散优化的离散凸逼近
- 批准号:
21K04533 - 财政年份:2021
- 资助金额:
$ 14.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parameter-Free Optimization Algorithms for Underdetermined Linear Inverse Problems
欠定线性反问题的无参数优化算法
- 批准号:
20K23324 - 财政年份:2020
- 资助金额:
$ 14.48万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Multifidelity Nonsmooth Optimization and Data-Driven Model Reduction for Robust Stabilization of Large-Scale Linear Dynamical Systems
用于大规模线性动力系统鲁棒稳定的多保真非光滑优化和数据驱动模型简化
- 批准号:
2012250 - 财政年份:2020
- 资助金额:
$ 14.48万 - 项目类别:
Continuing Grant
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2020
- 资助金额:
$ 14.48万 - 项目类别:
Discovery Grants Program - Individual
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2019
- 资助金额:
$ 14.48万 - 项目类别:
Discovery Grants Program - Individual
Optimization and dissemination of non-linear Acousto-Optic Lens two-photon microscopy for high speed multiscale 3D imaging
用于高速多尺度 3D 成像的非线性声光透镜双光子显微镜的优化和推广
- 批准号:
10005501 - 财政年份:2019
- 资助金额:
$ 14.48万 - 项目类别:














{{item.name}}会员




