Representations of the Polydisc Algebra

多圆盘代数的表示

基本信息

  • 批准号:
    9706837
  • 负责人:
  • 金额:
    $ 5.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-01 至 1999-05-10
  • 项目状态:
    已结题

项目摘要

Abstract Ferguson The proposed research is to study representations of the polydisc algebra on Hilbert space using cohomological tools together with techniques from operator theory and operator algebras. Problems in dilation theory, as well as, joint similarity problems for commuting N-tuples of operators, can be formulated and studied in the general framework of bounded cohomology. The cohomological groups can be realized concretely as quotients of bounded operators and thus these groups, as well as, the techniques used to compute them, should be of interest to both operator theorists and operator algebraists. A significant portion of the cohomology theory developed for Banach modules is not, in general, applicable in the study of Hilbert modules over operator algebras. Consequently, there are no standard techniques one can use to compute cohomology groups. The methods employed so far involve homological algebra together with operator theoretic techniques, two seemingly disparate areas of mathematics. Consequently, computations of these groups leads to new insight and new techniques in operator theory. Also important is that certain problems in operator theory when formulated in the general context of bounded cohomology become more transparent and simple algebraic computation often leads to a significant reduction in the problem. For this reason alone, bounded cohomolgy for Hilbert modules will likely become a powerful tool for those working in operator theory.
摘要Ferguson提出的研究是利用上同调工具,结合算子理论和算子代数的技巧,研究Hilbert空间上多圆盘代数的表示。膨胀理论中的问题,以及交换的N元组算子的联合相似问题,都可以在有界上同调的一般框架下表示和研究。上同调群可以具体地实现为有界算子的商,因此这些群以及计算它们的技巧应该是算子理论家和算子代数学家都感兴趣的。一般地,为Banach模发展的上同调理论的很大一部分不适用于算子代数上的Hilbert模的研究。因此,没有标准的技术可以用来计算上同调群。到目前为止,所使用的方法涉及同调代数和算符理论技术,这两个似乎完全不同的数学领域。因此,对这些群的计算为算子理论带来了新的见解和新的技术。同样重要的是,当算子理论中的某些问题在有界上同调的一般上下文中表述时,变得更加透明,简单的代数计算通常会导致问题的显着减少。仅因为这个原因,Hilbert模的有界上同调很可能成为从事算子理论工作的人的有力工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Ferguson其他文献

348 – Bmi Rather Than Symptoms is Associated with Altered Esophageal Mucosal Integrity in Patients with Refractory Gerd
  • DOI:
    10.1016/s0016-5085(19)36960-4
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Teminioluwa Ajayi;Michael Blanco;Dhyanesh A. Patel;Caroline Barrett;Sarah Ferguson;Tina Higginbotham;James C. Slaughter;Elif Yuksel;Michael F. Vaezi
  • 通讯作者:
    Michael F. Vaezi
Can we predict recurrence following microdiscectomy?
  • DOI:
    10.1016/j.spinee.2014.12.043
  • 发表时间:
    2015-03-02
  • 期刊:
  • 影响因子:
  • 作者:
    Fabian Wong;Sarah Ferguson;Otto Von Arx;Maurice Paterson
  • 通讯作者:
    Maurice Paterson
Diagnostic accuracy of frozen section and patterns of nodal spread in high grade endometrial cancer: a secondary analysis of the SENTOR prospective cohort study
  • DOI:
    10.1016/s0090-8258(21)00762-9
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zibi Marchocki;Maria Cusimano;Danielle Vicus;Katherine Pulman;Marjan Rouzbahman;Jelena Mirkovic;Matthew Cesari;Manjula Maganti;Aysha Zia;Gabrielle Ene;Sarah Ferguson
  • 通讯作者:
    Sarah Ferguson
Molecular classification of endometrial cancers using an integrative DNA sequencing panel (271)
  • DOI:
    10.1016/s0090-8258(22)01492-5
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Soyoun Rachel Kim;Leslie Oldfield;Osvaldo Espin-Garcia;Kathy Han;Danielle Vicus;Lua Eiriksson;Alicia Tone;Aaron Pollett;Emily Van de Laar;Stephanie Pedersen;Johanna Wellum;Marcus Bernardini;Trevor Pugh;Sarah Ferguson
  • 通讯作者:
    Sarah Ferguson
Characterization of epithelial ovarian cancer based on multigene tumor testing and homologous recombination deficiency (HRD) testing (COMBO)
基于多基因肿瘤检测和同源重组缺陷(HRD)检测(组合)的上皮性卵巢癌特征
  • DOI:
    10.1016/j.ygyno.2024.07.237
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Elisabeth Spenard;Melanie Care;Jeanna McCuaig;Blaise Clarke;Raymond Kim;Sarah Ferguson;Laura Ranich;Tracy Stockley;Marcus Bernardini
  • 通讯作者:
    Marcus Bernardini

Sarah Ferguson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Ferguson', 18)}}的其他基金

Broadening Participation in STEM Through Virtual Reality Career Exploration: Introducing Underrepresented Students to High Need STEM Careers
通过虚拟现实职业探索扩大对 STEM 的参与:向代表性不足的学生介绍高需求的 STEM 职业
  • 批准号:
    2000865
  • 财政年份:
    2020
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Multivariable operator theory and analytic operator spaces
多变量算子理论和解析算子空间
  • 批准号:
    0071514
  • 财政年份:
    2000
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Continuing Grant
Representations of the Polydisc Algebra
多圆盘代数的表示
  • 批准号:
    9996257
  • 财政年份:
    1998
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Continuing Grant

相似海外基金

Function Theory and Operator Theory via Harmonic Analysis on the Polydisc
基于多圆盘的调和分析的函数论和算子理论
  • 批准号:
    1001098
  • 财政年份:
    2010
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Research of a Hardy space on a polydisc
多圆盘Hardy空间的研究
  • 批准号:
    17540139
  • 财政年份:
    2005
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of the Polydisc Algebra
多圆盘代数的表示
  • 批准号:
    9996257
  • 财政年份:
    1998
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Continuing Grant
Polydisc, fine limits, polar sets, carleson measures
多圆盘、精细极限、极坐标集、卡尔森测量
  • 批准号:
    89729-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Discovery Grants Program - Individual
Polydisc, fine limits, polar sets, carleson measures
多圆盘、精细极限、极坐标集、卡尔森测量
  • 批准号:
    89729-1992
  • 财政年份:
    1993
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Discovery Grants Program - Individual
Polydisc, fine limits, polar sets, carleson measures
多圆盘、精细极限、极坐标集、卡尔森测量
  • 批准号:
    89729-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了