Function Theory and Operator Theory via Harmonic Analysis on the Polydisc
基于多圆盘的调和分析的函数论和算子理论
基本信息
- 批准号:1001098
- 负责人:
- 金额:$ 5.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Proposal is to conduct a deeper study of certain function theoretic concepts for Besov--Sobolev spaces of analytic functions, in one and several complex variables. Specifically, questions related to bilinear forms on spaces of analytic functions, Corona-type problems for multiplier algebras of spaces of analytic functions, and function theory on the polydisc will be approached. The main method of approach is to apply ideas and tools from harmonic analysis to address the problems raised in this proposal with the goal of resolving important and open questions arising in the areas of function and operator theory. The research program outlined in this Proposal utilizes the PI's knowledge and techniques gained from the areas of multi-parameter harmonic analysis and complex function theory to provide an array of tools by which to approach the challenging questions raised in the proposal. The proposed research is based on recent, significant contributions made by the Proposer and focuses on key questions connected to analytic functions on the disc and polydisc.The questions studied in this proposal have important connections with the areas of complex analysis, function theory, harmonic analysis and operator theory. Solutions to the research questions posed in this Proposal will have countless applications in complex analysis, function theory, harmonic analysis, and operator theory. Not only will they open the way to additional mathematical inquiry, but they will also have significant application to real-world ideas, in particular in the areas of engineering and control theory. Postdoctoral associates and graduate students will also be engaged in this project, enhancing the scientific infrastructure of the country.
这一建议的研究目的是对解析函数的Besov-Sobolev空间的某些函数论概念进行更深入的研究。具体地说,将探讨与解析函数空间上的双线性形式、解析函数空间的乘子代数的冠型问题以及多圆盘上的函数理论有关的问题。方法的主要方法是应用调和分析的思想和工具来解决本提案中提出的问题,目的是解决在函数和算子理论领域中出现的重要和公开的问题。本提案中概述的研究计划利用PI从多参数调和分析和复函数理论领域获得的知识和技术,提供一系列工具来解决提案中提出的具有挑战性的问题。这项研究是在作者最近的重大贡献的基础上进行的,主要集中在与圆盘和多圆盘上的解析函数有关的关键问题上,所研究的问题与复分析、函数论、调和分析和算子理论等领域有着重要的联系。这项建议中提出的研究问题的解决方案将在复分析、函数论、调和分析和算子理论中有无数的应用。它们不仅将为更多的数学探索开辟道路,而且还将在现实世界的想法中有重要的应用,特别是在工程和控制理论领域。博士后助理和研究生也将参与这一项目,加强国家的科学基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brett Wick其他文献
Steven George Krantz (1951 -) Celebrates his 70th Birthday
- DOI:
10.1007/s11785-023-01480-3 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:0.800
- 作者:
Arni S. R. Srinivasa Rao;Siqi Fu;Gregory Knese;Kaushal Verma;Brett Wick - 通讯作者:
Brett Wick
Brett Wick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brett Wick', 18)}}的其他基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
- 批准号:
2230844 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Symmetry Parameter Analysis of Singular Integrals
奇异积分的对称参数分析
- 批准号:
2054863 - 财政年份:2021
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Singular Integrals with Modulation or Rotational Symmetry
具有调制或旋转对称性的奇异积分
- 批准号:
2000510 - 财政年份:2019
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
- 批准号:
1936503 - 财政年份:2019
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Applications of Harmonic Analysis to Riesz Transforms and Commutators beyond the Classical Settings
谐波分析在经典设置之外的 Riesz 变换和换向器中的应用
- 批准号:
1800057 - 财政年份:2018
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
- 批准号:
1500509 - 财政年份:2015
- 资助金额:
$ 5.3万 - 项目类别:
Continuing Grant
CAREER: An Integrated Proposal Based on The Corona Problem
职业:基于新冠问题的综合提案
- 批准号:
1603246 - 财政年份:2015
- 资助金额:
$ 5.3万 - 项目类别:
Continuing Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
- 批准号:
1560955 - 财政年份:2015
- 资助金额:
$ 5.3万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Grants Program - Individual
Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
- 批准号:
2154494 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
- 批准号:
2055013 - 财政年份:2021
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Multivariable Operator Theory: The Interplay between Function Theory, Operator Theory and Operator Algebras
多变量算子理论:函数论、算子理论和算子代数之间的相互作用
- 批准号:
1900364 - 财政年份:2019
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2017
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2016
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Grants Program - Individual
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
- 批准号:
1500509 - 财政年份:2015
- 资助金额:
$ 5.3万 - 项目类别:
Continuing Grant
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2015
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Grants Program - Individual
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
- 批准号:
1560955 - 财政年份:2015
- 资助金额:
$ 5.3万 - 项目类别:
Continuing Grant