Efficient, High Resolution, Numerical Methods for Free-boundry Problems with Surface Tension

解决表面张力自由边界问题的高效、高分辨率数值方法

基本信息

  • 批准号:
    9706847
  • 负责人:
  • 金额:
    $ 6.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 1999-07-26
  • 项目状态:
    已结题

项目摘要

9706847 Sussman This research concerns the analysis and development of numerical techniques for modeling solutions of the Navier-Stokes equations for two-phase incompressible flow. This methodology is specifically targeted at problems characterized by large density and viscosity jumps (e.g. air/water) and stiff, singular source terms, such as those due to the surface tension force. Problems with these features are extremely important in science and industry. Casting, mold filling, thin film processes, extrusion, spray deposition and jets are just a few examples. These problems present considerable challenges. Standard finite difference methods can either be too dissipative or too oscillatory near regions of large density variations. The resulting elliptic equation for enforcing the divergence free condition on the velocity field (projection step) has coefficients that exhibit a large jump at material interfaces. The resulting elliptic equation will also have a widely varying source term at material interfaces, since the divergence of the surface tension term will appear as a singular source term for the projection equation. In this research, the proposers plan to work in close collaboration with Dr. John Andrews of Xerox and David Wallace of Microfab technologies in developing numerical methods for modeling jetting devices. In an ink-jet device, it is important to study the characteristics of droplet formation. Because surface tension plays a large role in the droplet formation process, it is important for a numerical method to accurately model the surface tension effects during break-up of a droplet. It is also important for a numerical method to accurately predict the size of emitted droplets. Currently an adaptive level set method and a second order volume-of-fluid method have been developed for computing two-phase flows as characterized above. Objectives of the proposed research include improved numerical modeling of the interface between material boundaries and improved mo deling of surface tension, especially at points of droplet break-up. In the process of this study, the proposers will compare the behavior of the levelset method to that of the volume of fluid method which use a very similar formulation for the surface tension force. The proposers will also compare numerical solutions to solutions obtained via asymptotic methods and drop experiments conducted by Xerox. This research concerns the analysis and development of numerical techniques for modeling incompressible two-phase flow (such as air and water). Problems in two-phase flow are extremely important in science and industry. Casting, mold filling, thin film processes, extrusion, spray deposition and jets are just a few examples. In this research, the proposers plan to work in close collaboration with Dr. John Andrews of Xerox and David Wallace of Microfab technologies in developing numerical methods for modeling jetting devices. These companies develop jetting devices used in ink-jet printers, solder deposition and the fabrication of micro-optical elements. In a jetting device, it is important to study the characteristics of droplet formation. Because surface tension plays a large role in the droplet formation process, it is important for a numerical method to accurately model the surface tension effects during break-up of a droplet. It is also important for a numerical method to accurately predict the size of emitted droplets. Objectives of the proposed research include improved numerical modeling of the interface between material boundaries and improved modeling of surface tension, especially at points of droplet break-up. In the process of this study, the proposers will compare the behavior of the computational method with drop experiments conducted by Xerox.
9706847萨斯曼这项研究涉及两相不可压缩流动的N-S方程的数值模拟技术的分析和发展。这种方法专门针对密度和粘度跳跃较大(例如空气/水)和僵硬、单一源项的问题,如表面张力引起的问题。这些特性的问题在科学和工业中极其重要。铸造、充模、薄膜加工、挤压、喷射沉积和喷射只是其中的几个例子。这些问题带来了相当大的挑战。在密度变化较大的区域附近,标准的有限差分方法要么耗散太大,要么太振荡。在速度场上实施无散度条件(投影步长)所得到的椭圆型方程的系数在材料界面处表现出很大的跳跃。由于表面张力项的发散将表现为投影方程的奇异源项,因此所得到的椭圆型方程在材料界面处也将具有变化很大的源项。在这项研究中,提出者计划与施乐的约翰·安德鲁斯博士和Microfab Technologies的大卫·华莱士密切合作,开发建立喷射设备模型的数值方法。在喷墨装置中,研究液滴的形成特性是非常重要的。由于表面张力在液滴形成过程中起着很大的作用,因此准确地模拟液滴破碎过程中的表面张力效应对于数值方法来说是很重要的。对于数值方法来说,准确预测排放液滴的大小也是很重要的。目前,已发展了一种自适应水平集方法和二阶流体体积方法来计算上述两相流动。拟议研究的目标包括改进材料边界之间界面的数值模拟和改进表面张力的模拟,特别是在液滴破碎点。在这项研究的过程中,提出者将比较Level Set方法和流体体积方法的行为,后者使用非常相似的表面张力公式。提出者还将把数值解与通过渐近方法和施乐进行的Drop实验获得的解进行比较。这项研究是关于不可压缩两相流(如空气和水)数值模拟技术的分析和发展。两相流中的问题在科学和工业中都是极其重要的。铸造、充模、薄膜加工、挤压、喷射沉积和喷射只是其中的几个例子。在这项研究中,提出者计划与施乐的约翰·安德鲁斯博士和Microfab Technologies的大卫·华莱士密切合作,开发建立喷射设备模型的数值方法。这些公司开发用于喷墨打印机、焊料沉积和微型光学元件制造的喷射设备。在喷射装置中,研究液滴的形成特性是非常重要的。由于表面张力在液滴形成过程中起着很大的作用,因此准确地模拟液滴破碎过程中的表面张力效应对于数值方法来说是很重要的。对于数值方法来说,准确预测排放液滴的大小也是很重要的。拟议研究的目标包括改进材料边界之间界面的数值模拟和改进表面张力的模拟,特别是在液滴破碎点。在这项研究的过程中,提出者将把计算方法的行为与施乐进行的水滴实验进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Sussman其他文献

Cardiac Progenitor Cell Fate in Embryonic and Neonatal Environments
  • DOI:
    10.1016/j.yjmcc.2018.07.010
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bingyan Wang;Alvin Muliono;Roberto Alvarez;Roberto Sacripanti;Mark Sussman
  • 通讯作者:
    Mark Sussman
Cardiac Progenitor Cell Lineage Tracing During Embryonic Cardiomyogenesis
  • DOI:
    10.1016/j.yjmcc.2017.07.027
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bingyan Wang;Alvin Muliono;Roberto Alvarez;Mark Sussman
  • 通讯作者:
    Mark Sussman
Cardiomyocyte Biology Revealed by Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI)
  • DOI:
    10.1016/j.yjmcc.2018.07.011
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Roberto Alvarez;Pearl Quijada;Bingyan Wang;Maya Shaitrit;Thi Ho;Natalie Gude;Mark Sussman
  • 通讯作者:
    Mark Sussman
Mitochondrial Dysfunction and Senescence of Human Cardiac Progenitor Cells Are Prevented by Hypoxic Culture
  • DOI:
    10.1016/j.yjmcc.2018.07.065
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dieter Kubli;Kelli Korski;Mark Sussman
  • 通讯作者:
    Mark Sussman
P2Y<sub>14</sub> nucleotide receptor overexpression: Letting blind cardiac progenitor cells 'see' again
  • DOI:
    10.1016/j.yjmcc.2017.07.029
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Farid Khalafalla;Waqas Kayani;Arwa Kassab;Kelli Ilves;Roberto Alvarez;Monica Chavarria;Benjamin Norman;Mark Sussman
  • 通讯作者:
    Mark Sussman

Mark Sussman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Sussman', 18)}}的其他基金

A spectrally accurate hybrid moment-of-fluid and level set method for multiphase flows
多相流的光谱精确混合流体矩和水平集方法
  • 批准号:
    1418983
  • 财政年份:
    2014
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Continuing Grant
Computational Design of Microfluidic Structures
微流体结构的计算设计
  • 批准号:
    1016381
  • 财政年份:
    2010
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Continuing Grant
A Computational study of the spray characteristics of a liquid jet atomized by cross-flowing air
交叉流空气雾化液体射流喷雾特性的计算研究
  • 批准号:
    0713256
  • 财政年份:
    2007
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Science: A Computational Study of Bubble and Drop Dynamics in Inelastic and Viscoelastic Non-Newtonian Fluid Systems
美日合作科学:非弹性和粘弹性非牛顿流体系统中气泡和液滴动力学的计算研究
  • 批准号:
    0242524
  • 财政年份:
    2003
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Numerical Methods for Microscale and Nanoscale Multiphase Flow in General Geometries
一般几何中微尺度和纳米尺度多相流的数值方法
  • 批准号:
    0108672
  • 财政年份:
    2001
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Efficient, High Resolution, Numerical Methods for Free-boundry Problems with Surface Tension
解决表面张力自由边界问题的高效、高分辨率数值方法
  • 批准号:
    9996349
  • 财政年份:
    1999
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Resolution算法的交互时态逻辑自动验证机
  • 批准号:
    61303018
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Unraveling the progenitors of Type Ia supernova remnants through combining high resolution X-ray spectroscopy and numerical simulation
通过结合高分辨率 X 射线光谱和数值模拟来解开 Ia 型超新星遗迹的前身
  • 批准号:
    22KJ1047
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring the origin of binary star parameters using high-resolution numerical simulations
使用高分辨率数值模拟探索双星参数的起源
  • 批准号:
    23K03464
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Elucidation of ground infiltration failure mechanism by high-resolution transparent ground experiments and large-scale numerical simulation
通过高分辨率透明地面实验和大规模数值模拟阐明地面渗透破坏机制
  • 批准号:
    22H01593
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A study of the late stege planetary formation by high-resolution numerical simulation of the giant impact
巨撞击高分辨率数值模拟研究晚期斯泰格行星形成
  • 批准号:
    20J01258
  • 财政年份:
    2020
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Origin of Voluminous, Hydrous, High-SiO2 Rhyolites at Long Valley, CA: High-resolution Numerical Thermal Models and Dynamic, Hydrous Experiments
加利福尼亚州长谷大量含水高 SiO2 流纹岩的起源:高分辨率数值热模型和动态含水实验
  • 批准号:
    1855751
  • 财政年份:
    2019
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Modelling the Uptake and Exchange of Microplastics in Marine Ecosystems using a Novel, Integrated System of High-Resolution Numerical Models
使用新型高分辨率数值模型集成系统模拟海洋生态系统中微塑料的吸收和交换
  • 批准号:
    2280704
  • 财政年份:
    2019
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了