Approximation of the Global Attractors of Evolution Equations

进化方程全局吸引子的近似

基本信息

  • 批准号:
    9706903
  • 负责人:
  • 金额:
    $ 17.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9706903 M. Jolly Abstract This project concerns the long time behavior of certain dissipative physical systems. One major component seeks to locate global attractors by interpolatory means rather than by direct numerical solution of initial value problems. It would extend our previous work which used a Taylor expansion in complexified time at a single point in phase space. The new approach will use several points, typically those on solutions provided either by independent computations or from experimental data. The main mathematical tool in this effort will be Nevalinna-Pick interpolation. The systems on which this will be tested include the 2-D Navier-Stokes (NS), Kuramoto-Sivashinsky (KS) Lorenz equations as well as simple geostrophic models. Another major component is to compute invariant manifolds to arbitrary accuracy. We will use the visualization of 2-D (un)stable manifolds to help understand the geometric mechanisms behind certain global bifurcations in 3-D phase space. This involves computing a major portion of global manifolds. Other applications require only that the manifold be computed along particular trajectories. In one case a center manifold will be treated in this way to compute bounded solutions to an elliptic partial differential equation (PDE) in an infinite cylinder. In another, the dimension of phase space for the KS equation will be effectively reduced to three dimensions by restricting the flow to an inertial manifold of that dimension. Such a reduction will allow us to study global bifurcations as described above. The algorithms developed to compute these manifolds will also be applied to the sets (conjectured to be manifolds) of a prescribed exponential growth rate backward in time for the NS equation. In fact we will construct such sets as stable "manifolds" for an inverted form of the NS equation in which infinity and the origin of phase space are swapped. These sets play a role in the interpolatory approach to locating global attractors, and thus bring our research full circle. The main purpose of this work is to develop reliable methods to determine whether certain dynamic behavior in physical systems is permanent, or merely temporary. The ultimate application will be to climatology. Since the earth's weather system has been evolving for millions of years, one would expect that unless sudden external events take place, the patterns we are living through now will more or less continue for a reasonable period of time. This is not about accurate long time forecasting, rather it is about confirming basic assumptions regarding the mathematical models used in making those predictions. The scientific community makes a tremendous effort in deriving appropriate mathematical equations, and discretizing them so they can be solved on a computer, all to produce a function of time, which should describe some aspect of the weather. We all know how often this computed function of time deviates from the actual weather after a relatively short time period. The major source of this error is not clear. Is it in the model itself? Is it from the numerical approximation in the computer solution? Or is it that both the model and the approximation are valid, but the actual solution is very sensitive to small changes in the initial data, and we simply need to tighten the tolerance of error in that data and in the algorithm used at each time step. Our work is directed at distinguishing between the first two cases and the third. Indeed we seek to validate the model-algorithm pair which produces the forecast, as producing a pattern which is of a permanent nature, even if it is not the particular pattern we are experiencing after several days time. The failure of such a test will indicate that either the model and/or the method of solution are faulty. This approach can be applied to other physical problems. Indeed the initial testing of the methods will be done on systems less invol ved than that of the weather, but which are nevertheless of current scientific interest. In particular we consider fundamental models of combustion, fluid flow, and turbulence.
9706903 M. jolly 摘要 这个项目关注某些耗散物理系统的长期行为。 其中一个主要组成部分是试图找到全球吸引插值手段,而不是直接数值解的初始值问题。 这将扩展我们以前的工作,使用泰勒展开在复杂的时间在相空间中的一个单一的点。 新的方法将使用几个点,通常是那些由独立计算或实验数据提供的解决方案。 主要的数学工具,在这方面的努力将是Nevalinna-Pick插值。 这将被测试的系统包括2-D Navier-Stokes(NS),Kuramoto-Sivashinsky(KS)Lorenz方程以及简单的地转模式。 另一个主要组成部分是计算不变流形到任意精度。 我们将使用2-D(不)稳定流形的可视化来帮助理解3-D相空间中某些全局分叉背后的几何机制。 这涉及到计算全局流形的主要部分。 其他应用只需要沿沿着特定轨迹计算流形。 在一种情况下,一个中心流形将被视为以这种方式来计算有界的解决方案,椭圆型偏微分方程(PDE)在一个无限的圆柱。 在另一种情况下,KS方程的相空间的维度将通过将流动限制到该维度的惯性流形而有效地减少到三维。 这样的约化将允许我们研究如上所述的全局分叉。 开发的算法来计算这些流形也将被应用到集(假设是流形)的一个规定的指数增长率向后的时间为NS方程。 事实上,我们将构造这样的集合作为NS方程的倒置形式的稳定"流形",其中无穷大和相空间的原点被交换。 这些集合在定位全局吸引子的插值方法中发挥了作用,从而使我们的研究圆满完成。 这项工作的主要目的是开发可靠的方法来确定物理系统中的某些动态行为是永久的,还是仅仅是暂时的。 最终的应用将是气候学。 由于地球的天气系统已经进化了数百万年,人们可以预期,除非突然的外部事件发生,否则我们现在所经历的模式将或多或少地持续一段合理的时间。这不是关于准确的长期预测,而是关于确认关于做出这些预测所使用的数学模型的基本假设。 科学界做出了巨大的努力,推导出适当的数学方程,并将其离散化,以便在计算机上求解,所有这些都产生了时间函数,该函数应该描述天气的某些方面。 我们都知道这个计算的时间函数在相对较短的时间段后偏离实际天气的频率。 这个错误的主要来源尚不清楚。 是在模型本身吗? 是计算机解中的数值近似吗? 或者,模型和近似值都是有效的,但实际解对初始数据的微小变化非常敏感,我们只需要收紧数据和每个时间步所用算法的误差容限。 我们的工作旨在区分前两种情况和第三种情况。 事实上,我们试图验证产生预测的模型-算法对,因为它产生了一种永久性的模式,即使它不是我们在几天后经历的特定模式。 这种测试的失败将表明模型和/或解决方案的方法是错误的。 这种方法可以应用于其他物理问题。 实际上,这些方法的初步测试将在比天气更少涉及的系统上进行,但这些系统仍然是当前科学感兴趣的。 特别是,我们考虑燃烧,流体流动和湍流的基本模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Jolly其他文献

Improving Sglt2i Use On Our Interventional Cardiology Service For Patients At Risk For Heart Failure
  • DOI:
    10.1016/j.cardfail.2023.10.457
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aditya Kesari;Katherine Crawford;Joseph Campbell;Christopher Huff;Michael Jolly
  • 通讯作者:
    Michael Jolly
LOST IN THE CLOTS: A CASE OF PRIMARY PULMONARY ARTERY SARCOMA MASQUERADING AS A PULMONARY EMBOLISM
  • DOI:
    10.1016/s0735-1097(24)04772-7
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Grebennikov;Michael Jolly;Joseph Campbell;Mitchell J. Silver
  • 通讯作者:
    Mitchell J. Silver
Outcomes of Endovascular Venous Stenting in Patients Receiving Direct Oral Anticoagulants and Antiplatelet Therapy: A Single-Center Experience
  • DOI:
    10.1016/j.jvsv.2019.12.039
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine Hays;Michael Jolly;Raghu Kolluri
  • 通讯作者:
    Raghu Kolluri
Red Flags for IPO Downfalls in New Zealand
新西兰IPO失败的危险信号
  • DOI:
    10.1108/mf-05-2017-0197
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huong Dang;Michael Jolly
  • 通讯作者:
    Michael Jolly
Linear morphea masquerading as superficial thrombophlebitis
伪装成血栓性浅静脉炎的线状硬斑病
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Michael Jolly;Seth Bendo;R. Kolluri
  • 通讯作者:
    R. Kolluri

Michael Jolly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Jolly', 18)}}的其他基金

A Computational Study of the Nudging Approach to Data Assimilation
数据同化助推方法的计算研究
  • 批准号:
    1818754
  • 财政年份:
    2018
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: Determining Forms and Data Assimilation with Stochastic Data
协作研究:利用随机数据确定形式和数据同化
  • 批准号:
    1418911
  • 财政年份:
    2014
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Study of turbulence in physical systems through complex singularities and determining modes
合作提案:通过复杂奇点和确定模式研究物理系统中的湍流
  • 批准号:
    1109638
  • 财政年份:
    2011
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1008861
  • 财政年份:
    2010
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
A study of how indicators for 2-D turbulence depend on the driving force in the Navier-Stokes equation
研究二维湍流指标如何取决于纳维-斯托克斯方程中的驱动力
  • 批准号:
    0511533
  • 财政年份:
    2005
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
FRG Collaborative Research: Approximation of Lyapunov exponents
FRG 协作研究:Lyapunov 指数的近似
  • 批准号:
    0139874
  • 财政年份:
    2002
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Approximation of the Global Attractors of Evolution Equations
进化方程全局吸引子的近似
  • 批准号:
    0074460
  • 财政年份:
    2000
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximation of the Global Attractors of Evolution Equations
数学科学:进化方程全局吸引子的近似
  • 批准号:
    9404340
  • 财政年份:
    1994
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Approximation of the Global Attractors of Evolution Equations
数学科学:进化方程全局吸引子的近似
  • 批准号:
    9007802
  • 财政年份:
    1990
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant
Implications of Global Economic Forces for Domestic Monetary Policy
全球经济力量对国内货币政策的影响
  • 批准号:
    DP240100970
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Discovery Projects
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
  • 批准号:
    24K13527
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
(Un)Fair inequality in the labor market: A global study
(Un)劳动力市场的公平不平等:一项全球研究
  • 批准号:
    MR/X033333/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Fellowship
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Fellowship
Synergistic global change impacts on belowground biodiversity and carbon stocks in mountain ecosystems
全球变化对山区生态系统地下生物多样性和碳储量的协同影响
  • 批准号:
    NE/X017605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Fellowship
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
  • 批准号:
    2349354
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了