Mathematical Sciences/GIG: Southwest Center for Arithmetical Algebraic Geometry

数学科学/GIG:西南算术代数几何中心

基本信息

  • 批准号:
    9709662
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

The investigators will establish a Center for Arithmetical Algebraic Geometry at the University of Arizona, in collaboration with the Universities of New Mexico, Southern California, and Texas. The center will further the research of the principal investigators; provide a forum for studying, extending, and disseminating the latest results in arithmetical algebraic geometry and related fields; and enhance the education and professional development of graduate students and recent PhDs in mathematics. Arithmetical algebraic geometry is a field of fundamental research which has its roots in classical problems of arithmetic and geometry, both highly abstract (such as expressing integers as sums of squares) and completely concrete (such as laying out fields for agriculture). On the other hand it has experienced tremendous advances in the twentieth century and is still vitally active today, as evidenced by such heroic advances as Faltings' resolution of the Mordell conjecture and Wiles' proof of Fermat's Last Theorem. Moreover, it has retained its relevance to contemporary life through its connections with robot control, computer vision, RSA data encryption, efficient audio and video compression algorithms, and other aspects of information technology.
调查人员将与新墨西哥州,南加州和德克萨斯大学合作,在亚利桑那大学建立一个算术代数几何中心。 该中心将进一步研究主要研究人员;提供一个论坛,用于研究,扩展和传播算术代数几何和相关领域的最新结果;并增强研究生的教育和专业发展以及数学的最新博士学位。 算术代数几何形状是一个基本研究领域,它源于算术和几何学的经典问题,既高度抽象(例如表达整数作为正方形总和)和完全混凝土(例如为农业铺设领域)。另一方面,它在20世纪已经取得了巨大的进步,并且在今天仍然活跃,这是诸如Faltings对Mordell猜想的决议和Wiles'Fermat的最后定理的证据所证明的那样。 此外,它通过与机器人控制,计算机视觉,RSA数据加密,有效的音频和视频压缩算法以及信息技术的其他方面的联系,保留了与当代生活的相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Ulmer其他文献

Elliptic curves over function fields
函数域上的椭圆曲线
On universal elliptic curves over Igusa curves
关于 Igusa 曲线上的通用椭圆曲线
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer
p-descent in characteristic p
p-特征 p 的下降
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer
L-functions with large analytic rank and abelian varieties with large algebraic rank over function fields
函数域上具有大解析秩的 L 函数和具有大代数秩的阿贝尔簇
  • DOI:
    10.1007/s00222-006-0018-x
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer
Park City lectures on elliptic curves over function fields
帕克城关于函数域上的椭圆曲线的讲座
  • DOI:
    10.1007/978-1-4613-0249-0_10
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer

Douglas Ulmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Ulmer', 18)}}的其他基金

Travel support for a CRM Research Program in Arithmetic Geometry of function fields of positive characteristic
正特征函数域算术几何 CRM 研究项目的差旅支持
  • 批准号:
    0968709
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    1004141
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    0701053
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    0400877
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Southwestern Center for Arithmetical Algebraic Geometry
西南算术代数几何中心
  • 批准号:
    0207478
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    0070839
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    9700871
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Arthmetic of Elliptic Curves and Automorphic Forms over Function Fields
数学科学:椭圆曲线和函数域自守形式的算术
  • 批准号:
    9114816
  • 财政年份:
    1991
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
  • 批准号:
    82374041
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
  • 批准号:
    62377005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
  • 批准号:
    82374446
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical Sciences/GIG: Mathematical Problems in Geophysics and Seismology
数学科学/GIG:地球物理学和地震学中的数学问题
  • 批准号:
    9709320
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Mathematical Sciences/GIG: Applications of Mathematics to Physiology
数学科学/GIG:数学在生理学中的应用
  • 批准号:
    9709608
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: New Multidisciplinary Directions in Applied Mathematics Reserach & Teaching at MIT (Group Infrastructure Grant)
数学科学/GIG:应用数学研究的新的多学科方向
  • 批准号:
    9709607
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Mathematical Sciences/GIG: Computational Science in Biomedical Systems
数学科学/GIG:生物医学系统中的计算科学
  • 批准号:
    9709754
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了