Arithmetical Algebraic Geometry

算术代数几何

基本信息

  • 批准号:
    9700871
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-01 至 2001-05-31
  • 项目状态:
    已结题

项目摘要

9700871 Ulmer A fundamental problem in number theory is to construct rational points of infinite order on elliptic curves defined over global fields. To date, the most successful general method has used Heegner points. Briefly, one defines certain divisors on a modular curve by specifying points in the upper half-plane; the theory of complex multiplication allows one to show that these divisors are defined over a number field, and using a modular parameterization one gets rational points on the elliptic curve. One needs then to test whether these points have infinite order, which can be done by comparing their heights with special values of L-functions using the method of Gross and Zagier. The first project Ulmer will pursue is extending these methods to the case of elliptic curves defined over the fields of functions of curves over finite fields. Specifically, he proposes to develop the analogues of the results of Gross and Zagier relating values of L-functions to heights of special points on Shimura curves. This will allow one to prove that certain Heegner points, a priori rational, have infinite order and thereby prove the conjecture of Birch and Swinnerton-Dyer for elliptic curves over function fields whose L-function vanishes simply. The second project Ulmer will investigate is also related to elliptic curves over function fields. As in the number field case, the group of rational points on such an elliptic curve is finitely generated. On the other hand, the group of local points is very big--it is a Zp-module of infinite rank. He proposes to construct a submodule of the local points which is of finite Zp-rank and which contains the global points. In contrast to the Heegner point construction, this method yields points which are a priori of infinite order; in some cases one can identify a Z-module of points which are conjecturally rational over the ground field, thus offering the hope of an alternative construction of global points of infinite order. The third project deals with the mod p Galois representations attached to classical modular forms. Specifically, Ulmer plans to use the existence of a large supply of congruences between modular forms proved in his previous work to study the geometry of a parameter space of p-adic modular forms constructed by Coleman. He also hopes to relate a property of modular representations (``twisted ordinarity'', which is roughly speaking the condition that the representation be reducible when restricted to a decomposition group at p) to ``slopes'', i.e., to the valuations of Hecke eigenvalues. This project falls into the general area of arithmetic geometry - a subject that blends two of the oldest areas of mathematics: number theory and geometry. This combination has proved extraordinarily fruitful, having recently solved problems that withstood the efforts of generations. Among its many consequences are new error correcting codes which are used in computer storage devices like compact disks and hard drives and secure information transmission schemes which are used for financial transactions on the internet.
9700871 Ulmer数论中的一个基本问题是构造定义在整体域上的椭圆曲线上的无限级有理点。到目前为止,最成功的一般方法是使用Heegner点。简单地说,通过指定上半平面上的点来定义模曲线上的某些因子;复数乘法理论允许人们证明这些因子定义在数域上,并且使用模参数化得到椭圆曲线上的有理点。然后,人们需要检验这些点是否具有无穷级,这可以通过使用Gross和Zagier的方法将它们的高度与L函数的特殊值进行比较来实现。Ulmer要追求的第一个项目是将这些方法推广到定义在有限域上的曲线函数域上的椭圆曲线的情况。具体地说,他建议推广Gross和Zagier关于L函数的值与Shimura曲线上特殊点的高度的结果的类比。这将使我们能够证明某些先验有理的Heegner点是无穷级的,从而证明了Birch和Swinnerton-Dyer关于其L函数简单消失的函数域上的椭圆曲线的猜想。Ulmer将要研究的第二个项目也与函数域上的椭圆曲线有关。与数域的情况一样,这种椭圆曲线上的有理点群是有限生成的。另一方面,局部点群是非常大的--它是一个无限秩ZP-模。他建议构造一个局部点的子模,它具有有限的ZP-秩且包含全局点。与Heegner点构造不同的是,这种方法产生的点是无穷级先验的;在某些情况下,人们可以识别在地面上猜想有理的点的Z-模,从而提供了一种替代无穷级全局点的构造的希望。第三个项目研究附加到经典模形式上的mod p Galois表示。具体地说,Ulmer计划利用他以前的工作中证明的模形式之间存在大量同余的性质来研究由Coleman构造的p-进模形式的参数空间的几何。他还希望将模表示的一个性质(“扭转正规性”,粗略地说,这是指当限制到p处的分解群时表示是可约的)到“斜率”,即与Hecke特征值的赋值有关。这个项目属于算术几何的一般领域--一个融合了数论和几何这两个最古老的数学领域的学科。事实证明,这种结合非常有成效,最近解决了经得起几代人努力的问题。在其众多后果中,包括用于光盘和硬盘等计算机存储设备的新纠错码,以及用于互联网金融交易的安全信息传输方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Ulmer其他文献

Elliptic curves over function fields
函数域上的椭圆曲线
On universal elliptic curves over Igusa curves
关于 Igusa 曲线上的通用椭圆曲线
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer
p-descent in characteristic p
p-特征 p 的下降
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer
Park City lectures on elliptic curves over function fields
帕克城关于函数域上的椭圆曲线的讲座
  • DOI:
    10.1007/978-1-4613-0249-0_10
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer
L-functions with large analytic rank and abelian varieties with large algebraic rank over function fields
函数域上具有大解析秩的 L 函数和具有大代数秩的阿贝尔簇
  • DOI:
    10.1007/s00222-006-0018-x
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Douglas Ulmer
  • 通讯作者:
    Douglas Ulmer

Douglas Ulmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Ulmer', 18)}}的其他基金

Travel support for a CRM Research Program in Arithmetic Geometry of function fields of positive characteristic
正特征函数域算术几何 CRM 研究项目的差旅支持
  • 批准号:
    0968709
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    1004141
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    0701053
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    0400877
  • 财政年份:
    2004
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Southwestern Center for Arithmetical Algebraic Geometry
西南算术代数几何中心
  • 批准号:
    0207478
  • 财政年份:
    2002
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Arithmetical Algebraic Geometry
算术代数几何
  • 批准号:
    0070839
  • 财政年份:
    2000
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Southwest Center for Arithmetical Algebraic Geometry
数学科学/GIG:西南算术代数几何中心
  • 批准号:
    9709662
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Arthmetic of Elliptic Curves and Automorphic Forms over Function Fields
数学科学:椭圆曲线和函数域自守形式的算术
  • 批准号:
    9114816
  • 财政年份:
    1991
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
  • 批准号:
    2312088
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了