Multi-Use "Plug-And-Play" Software Packages for Black Box and Inexact Symbolic Objects
用于黑匣子和不精确符号对象的多用途“即插即用”软件包
基本信息
- 批准号:9712267
- 负责人:
- 金额:$ 21.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-15 至 2000-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project conducts research in the design of efficient algorithms, their implementation in software packages, and in making the programs accessible to non-specialist users of symbolic computation systems. Packages for the black box representation of symbolic objects and for symbolic objects containing imprecise, that is, floating point data will be constructed. The packages are generically programmed as C++ template classes with abstract underlying arithmetics; they can be compiled with a variety of fast libraries for the basic field, floating point, and polynomial operations. A server/client interface seamlessly attaches the packages to all widely-used general purpose symbolic systems such as Maple and Mathetmatica. Parallel execution of the implemented algorithms will be facilitated. Black box objects are stored as functions. For instance: a black box polynomial is a procedure that takes values for the variables as input and evaluates the polynomial at that given point; a black box matrix is a procedure that takes an arbitrary vector as input and computes the matrix times vector product. The FoxBox system is a package for computing greatest common divisors and factoring black box polynomials. The aim is to eliminate algorithmic bottlenecks in FoxBox and add black box linear algebra. For sake of speed, the project focuses on algorithms over finite fields. Efficient server/client bridge code to a variety of general purpose systems will be developed. The project will also investigate how inexact (e.g., floating point) data can be handled in the course of a symbolic computation. The allowance of floating point coefficients in a symbolic, i.e., parameterized model, is crucial for a symbolic approach to problems from the physical world. Moreover, floating point arithmetic is faster than exact arithmetic, especially for algebraic numbers. Several numerical models, such as a-posteriori iterative improvement and sensitivity analysis for perturbed input data, will be considered. The problems of Toeplitz matrix rank, polynomial complex root location, and factoring complex polynomials in many variables will be investigated. The design of a plug-and-play symbolic/numeric package will be studied.
本项目研究高效算法的设计,它们在软件包中的实现,以及使程序对符号计算系统的非专业用户可访问。将构造用于符号对象的黑盒表示和用于符号对象的包含不精确(即浮点数)数据的包。这些包通常被编程为带有抽象底层算法的c++模板类;它们可以用各种用于基本字段、浮点数和多项式运算的快速库进行编译。服务器/客户端接口无缝地将包附加到所有广泛使用的通用符号系统,如Maple和mathematica。实现算法的并行执行将得到促进。黑箱对象作为函数存储。例如:黑盒多项式是一个过程,它将变量的值作为输入,并在给定点计算多项式;黑盒矩阵是将任意向量作为输入并计算矩阵与向量乘积的过程。FoxBox系统是一个用于计算最大公约数和分解黑箱多项式的包。其目的是消除FoxBox中的算法瓶颈,并添加黑箱线性代数。为了速度起见,该项目侧重于有限域上的算法。将开发到各种通用系统的高效服务器/客户端桥接代码。该项目还将研究如何在符号计算过程中处理不精确(例如浮点数)数据。在符号模型(即参数化模型)中允许浮点系数对于用符号方法解决物理世界中的问题至关重要。此外,浮点运算比精确运算更快,特别是对于代数数。几个数值模型,如后验迭代改进和灵敏度分析的扰动输入数据,将考虑。本文将研究Toeplitz矩阵秩、多项式复根定位、多变量复数多项式的因式分解等问题。一个即插即用的符号/数字包的设计将被研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erich Kaltofen其他文献
Deterministic distinct-degree factorization of polynomials over finite fields
有限域上多项式的确定性异次因式分解
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0.7
- 作者:
Shuhong Gao;Erich Kaltofen;Alan G. B. Lauder - 通讯作者:
Alan G. B. Lauder
What is Hybrid Symbolic-Numeric Computation?
- DOI:
10.1109/synasc.2011.65 - 发表时间:
2011-09 - 期刊:
- 影响因子:0
- 作者:
Erich Kaltofen - 通讯作者:
Erich Kaltofen
Parallel Computation of Polynomial Greatest Common Divisors
多项式最大公约数的并行计算
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Erich Kaltofen - 通讯作者:
Erich Kaltofen
Factorization of Polynomials
- DOI:
10.1007/978-3-7091-7551-4_8 - 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Erich Kaltofen - 通讯作者:
Erich Kaltofen
Erich Kaltofen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erich Kaltofen', 18)}}的其他基金
AF: Small: Symbolic Computation with Certificates, Sparsity and Error Correction
AF:小:带有证书、稀疏性和纠错的符号计算
- 批准号:
1717100 - 财政年份:2017
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
AF: Small: Symbolic computation with sparsity, error checking and error correction
AF:小:具有稀疏性、错误检查和纠错的符号计算
- 批准号:
1421128 - 财政年份:2014
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
AF: Small: Efficient Exact/Certified Symbolic Computation By Hybrid Symbolic-Numeric and Parallel Methods
AF:小型:通过混合符号数字和并行方法进行高效精确/认证符号计算
- 批准号:
1115772 - 财政年份:2011
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Model Discovery and Verification With Symbolic, Hybrid Symbolic-Numeric and Parallel Computation
使用符号、混合符号数值和并行计算进行模型发现和验证
- 批准号:
0830347 - 财政年份:2008
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Workshop on Advanced Cyber-Enabled Discovery & Innovation (CDI) Through Symbolic and Numeric Computation
高级网络驱动发现研讨会
- 批准号:
0751501 - 财政年份:2007
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Challenges in Linear and Polynomil Algebra in Symbolic Computation Algorithms
符号计算算法中线性代数和多项式代数的挑战
- 批准号:
0514585 - 财政年份:2005
- 资助金额:
$ 21.52万 - 项目类别:
Continuing Grant
Fast Bit Complexity in Symbolic Computation Algorithms
符号计算算法中的快速位复杂性
- 批准号:
0305314 - 财政年份:2003
- 资助金额:
$ 21.52万 - 项目类别:
Continuing Grant
ITR/ACS: Collaborative Research LinBox: A Generic Library for Seminumeric Black Box Linear Algebra
ITR/ACS:协作研究 LinBox:半数值黑盒线性代数通用库
- 批准号:
0113121 - 财政年份:2001
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Optimization, Randomization, and Generalization in Symbolic Computation
符号计算中的优化、随机化和泛化
- 批准号:
9988177 - 财政年份:2000
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Efficient Computer Algorithms for Symbolic Mathematics
符号数学的高效计算机算法
- 批准号:
9696203 - 财政年份:1996
- 资助金额:
$ 21.52万 - 项目类别:
Continuing Grant
相似海外基金
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 21.52万 - 项目类别:
Studentship
Validating FilaChar Use in Wastewater Treatment
验证 FilaChar 在废水处理中的使用
- 批准号:
10106623 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Launchpad
Museum Visitor Experience and the Responsible Use of AI to Communicate Colonial Collections
博物馆参观者体验和负责任地使用人工智能来交流殖民地收藏品
- 批准号:
AH/Z505547/1 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Research Grant
Examining the Effect of Childhood Individual and Contextual Risk Factors on Violence Use and Experience at Early Adulthood (18-21 years)
检查童年个体和背景风险因素对成年早期(18-21 岁)暴力使用和经历的影响
- 批准号:
2901103 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Studentship
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Research Grant
The Use of Geothermal Energy for the Decarbonisation of Heat in Greater Manchester
利用地热能实现大曼彻斯特热量脱碳
- 批准号:
NE/Y004973/1 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Resource Use as a Mediator of Sociodemographic Disparities in Student Success
博士后奖学金:STEMEdIPRF:资源利用作为学生成功中社会人口差异的中介
- 批准号:
2327314 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant