Statistical Methods in Computational Modeling and Virtual Experiments

计算建模和虚拟实验中的统计方法

基本信息

  • 批准号:
    9714380
  • 负责人:
  • 金额:
    $ 2.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-06-01 至 2000-11-30
  • 项目状态:
    已结题

项目摘要

PI: John Tucker Proposal Number: DMS 9714380 Project: Statistical Methods in Computational Modeling and Virtual Experiments Abstract: The Committee on Applied and Theoretical Statistics (CATS) will convene a multidisciplinary study panel on statistical methods in computational modeling and virtual experiments. The panel will recommend sound methods for identifying and quantifying uncertainties that arise in simulation experiments. The panel will develop recommendations for improved and, where necessary, new statistical methods and data analysis techniques for use in simulation modeling and virtual experiments. It will also recommend appropriate statistical methods to assist practitioners in their use of experimental data when validating simulation models or assessing model fit and predictive performance. These recommendations will address modeling and simulation limitations associated with ever increasingly complex systems. The panel's report will provide examples to illustrate the complexity of evaluating model combinations that arise from varying assumptions, parameters, and initial conditions within the models, will point out possible approaches for addressing those complexities from existing experimental design techniques, and will highlight areas needing further research. Experts may be consulted from the communities concerned with computer simulation, discrete events systems, and dynamic systems modeling, and any other scientists, researchers, or engineers with significant technology or methodology to contribute. A National Research Council panel of experts will examine the state-of-the-art for statistical methods used in computer simulation and modeling, and computational experimentation. This is needed because of an ever-growing dependence upon these kinds of simulations and "virtual" experiments in designing and evaluating such complicated devices and systems as semiconductors, automobiles, aircraft, spacecraft, or in very complex application areas such as transportation networks, government intelligence, and battlefield scenarios. The study will address how modeling and simulation tools can be developed with the robustness and reliability to handle the demands of emerging intelligence, domestic, and military technology. It will also look at limitations on modeling and simulation with respect to these increasingly complex systems.
PI:John Tucker提案编号:DMS 9714380项目:计算建模和虚拟实验中的统计方法摘要:应用和理论统计委员会(CATS)将召开一个关于计算建模和虚拟实验中统计方法的多学科研究小组。该小组将推荐可靠的方法来识别和量化模拟实验中出现的不确定性。该小组将提出改进的建议,并在必要时提出新的统计方法和数据分析技术,用于模拟建模和虚拟实验。它还将推荐适当的统计方法,以帮助从业者在验证模拟模型或评估模型拟合和预测性能时使用实验数据。这些建议将解决与日益复杂的系统相关的建模和仿真限制。专家小组的报告将举例说明评估模型组合的复杂性,这些模型组合因模型内不同的假设、参数和初始条件而产生,将指出从现有实验设计技术解决这些复杂性的可能方法,并将突出需要进一步研究的领域。可以咨询与计算机仿真、离散事件系统和动态系统建模相关的社区的专家,以及任何其他具有重要技术或方法论的科学家、研究人员或工程师。国家研究委员会的一个专家小组将审查计算机模拟和建模以及计算实验中使用的统计方法的最新水平。这是必要的,因为在设计和评估半导体、汽车、飞机、航天器等复杂设备和系统时,或在交通网络、政府情报和战场场景等非常复杂的应用领域,对这些类型的模拟和“虚拟”实验的依赖程度越来越高。这项研究将解决如何开发具有健壮性和可靠性的建模和仿真工具,以满足新兴的情报、国内和军事技术的需求。它还将研究与这些日益复杂的系统有关的建模和仿真方面的限制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Tucker其他文献

Program of the twenty-first annual meeting of tpotato association of america December 27 to 29, 1934
ICU Recall 3rd Edition
Subnanometer Analysis and Modeling of MBE Grown InP Based MODFETs
  • DOI:
    10.1007/s11664-997-0129-1
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Matthew Seaford;Scott Massie;Dave Hartzell;Glenn Martin;Warren Wu;John Tucker;Lester Eastman
  • 通讯作者:
    Lester Eastman
Huang, Chun-chieh, East Asian Confucianisms: Texts in Contexts

John Tucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Tucker', 18)}}的其他基金

Foundations of computing with continuous data: algorithms versus experiments with physical systems
连续数据计算的基础:算法与物理系统实验
  • 批准号:
    EP/C525361/1
  • 财政年份:
    2006
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Research Grant
U.S. Mathematical Sciences Research Institutes: Value and Need
美国数学科学研究所:价值与需求
  • 批准号:
    9812000
  • 财政年份:
    1998
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
International Record Linkage Conference
国际记录链接会议
  • 批准号:
    9619987
  • 财政年份:
    1997
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Actions for the Mathematical Sciences: Adapting to the Changed Environment
数学科学的行动:适应变化的环境
  • 批准号:
    9522123
  • 财政年份:
    1995
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Core Support of the Board on Mathematical Sciences
数学科学:数学科学委员会的核心支持
  • 批准号:
    9525898
  • 财政年份:
    1995
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
Statistical Methods in Software Engineering
软件工程中的统计方法
  • 批准号:
    9214755
  • 财政年份:
    1992
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Microscopic Structure and Dynamics of Charge Density Waves
电荷密度波的微观结构和动力学
  • 批准号:
    8715431
  • 财政年份:
    1988
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
Collective Charge Transport in Linear Chain Compounds
直链化合物中的集体电荷传输
  • 批准号:
    8120038
  • 财政年份:
    1982
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
  • 批准号:
    2232547
  • 财政年份:
    2023
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2022
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Grants Program - Individual
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
  • 批准号:
    RGPIN-2021-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Grants Program - Individual
Computational and statistical methods for loss models
损失模型的计算和统计方法
  • 批准号:
    RGPIN-2017-06643
  • 财政年份:
    2022
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
  • 批准号:
    RGPIN-2019-06131
  • 财政年份:
    2022
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Grants Program - Individual
Computational and statistical methods for loss models
损失模型的计算和统计方法
  • 批准号:
    RGPIN-2017-06643
  • 财政年份:
    2021
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Grants Program - Individual
DMS/NIGMS 2: Statistical Methods and Computational Algorithms for Biobank Data
DMS/NIGMS 2:生物样本库数据的统计方法和计算算法
  • 批准号:
    2054253
  • 财政年份:
    2021
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
REU Site: Mathematical, Statistical, and Computational Methods in the Life Sciences
REU 网站:生命科学中的数学、统计和计算方法
  • 批准号:
    2050133
  • 财政年份:
    2021
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
  • 批准号:
    DGECR-2021-00298
  • 财政年份:
    2021
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Launch Supplement
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2021
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了