Learning and Intelligent Systems: Simulating Tutors with Natural Dialog and Pedagogical Strategies
学习和智能系统:用自然对话和教学策略模拟导师
基本信息
- 批准号:9720314
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-15 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is being funded through the Learning and Intelligent Systems (LIS) Initiative. The long-term practical objective of the research is to develop a fully automated computer tutor. The tutor would be able to (a) extract meaning from the contributions that the student types into a keyboard and (b) formulate dialog contributions with pedagogical value and conversational appropriateness. The tutor's discourse moves include: pumping, prompting, hinting, questioning, answering, summarizing, splicing in correct information, providing immediate feedback, and rewording student contributions. The dialog contributions of the tutor would be in different formats and media: printed text, synthesized speech, simulated facial movements, graphic displays, and animation. Such an achievement will require an interdisciplinary integration of theory and empirical research from the fields of cognitive psychology, discourse processing, computational linguistics, artificial intelligence, human-computer interaction, and education. The tutoring topics will be in the domains of computer literacy and introductory medicine. Previous attempts to develop a fully automated tutor have been seriously challenged by some technical and theoretical barriers. These include (a) the problem of interpreting natural language when it is not well-formed semantically and grammatically, (b) the problem of world knowledge being immense, open-ended and incomplete, and (c) the lack of research on human tutorial dialog. Recent advances have dramatically reduced these barriers, so it is time to revisit the mission of developing an automated tutor. According to the recent research on human tutoring, a key feature of effective tutoring lies in generating discourse contributions that assist learners in actively constructing explanations, elaborations, and mental models of the material. The proposed research will advance scientific understanding of how a tutor can manage a smooth, polite dialog that promotes deep learning of the material.
该项目由学习和智能系统(LIS)倡议提供资金。这项研究的长期实用目标是开发一种全自动化的计算机家教。教师将能够(A)从学生在键盘上输入的内容中提取意义,(B)制定具有教学价值和会话适当性的对话内容。导师的话语动作包括:激发、提示、暗示、提问、回答、总结、拼接正确的信息、提供即时反馈,以及修改学生投稿的措辞。导师的对话内容将采用不同的格式和媒体:印刷文本、合成语音、模拟面部动作、图形显示和动画。这样的成就需要认知心理学、语篇处理、计算语言学、人工智能、人机交互和教育等领域的理论和实证研究的跨学科整合。辅导主题将在计算机基础知识和医学入门领域。之前开发全自动家教的尝试受到了一些技术和理论障碍的严重挑战。这些问题包括(A)当自然语言在语义和语法上不是很好的形式时对其进行解释的问题,(B)世界知识是巨大的、开放的和不完整的问题,以及(C)缺乏对人类指导对话的研究。最近的进步极大地减少了这些障碍,所以现在是时候重新审视开发自动化家教的使命了。根据最近对人类辅导的研究,有效辅导的一个关键特征在于产生话语贡献,帮助学习者积极地构建材料的解释、阐述和心理模型。这项拟议的研究将促进对教师如何管理流畅、礼貌的对话的科学理解,从而促进对材料的深入学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Graesser其他文献
Predicting Learning in a Multi-component Serious Game
- DOI:
10.1007/s10758-019-09421-w - 发表时间:
2019-08-26 - 期刊:
- 影响因子:3.500
- 作者:
Carol M. Forsyth;Arthur Graesser;Keith Millis - 通讯作者:
Keith Millis
Arthur Graesser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Graesser', 18)}}的其他基金
NSCC/LA: Collaborative Research: Modeling Discourse and Social Dynamics in Authoritarian Regimes
NSCC/LA:合作研究:威权政权中的话语和社会动态建模
- 批准号:
0904909 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Inducing, Tracking, and Regulating Confusion and Cognitive Disequilibrium during Complex Learning
复杂学习过程中诱导、跟踪和调节混乱和认知不平衡
- 批准号:
0834847 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
ITR: Monitoring Emotions while Students Learn with AutoTutor
ITR:使用 AutoTutor 监控学生学习时的情绪
- 批准号:
0325428 - 财政年份:2003
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Developing Auto Tutor for Computer Literacy and Physics
开发计算机知识和物理自动辅导员
- 批准号:
0106965 - 财政年份:2001
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Developing and testing a computer tool that critiques survey questions
开发和测试批评调查问题的计算机工具
- 批准号:
9977969 - 财政年份:2000
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2313191 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2313192 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
- 批准号:
23K03773 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-BSF: Utilizing Neurophysiological Measures to Better Understand and Improve Engagement and Learning with Intelligent Tutoring Systems
NSF-BSF:利用神经生理学措施通过智能辅导系统更好地理解和改善参与和学习
- 批准号:
2141139 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
A Multiple-Input-Multiple-Architectural (MIMA) Approach to Improving Learning and Decision Making in Robust Artificial Intelligent Systems (RAIS)
用于改进鲁棒人工智能系统 (RAIS) 中的学习和决策的多输入多架构 (MIMA) 方法
- 批准号:
DDG-2020-00034 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Development Grant
Intelligent Group Decision Systems and Preference Learning
智能群体决策系统和偏好学习
- 批准号:
RGPIN-2018-05903 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Grants Program - Individual
Using machine learning for model-free intelligent control of complex systems with constraints.
使用机器学习对有约束的复杂系统进行无模型智能控制。
- 批准号:
559783-2021 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Postgraduate Scholarships - Doctoral
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Grants Program - Individual