ITR: Monitoring Emotions while Students Learn with AutoTutor

ITR:使用 AutoTutor 监控学生学习时的情绪

基本信息

  • 批准号:
    0325428
  • 负责人:
  • 金额:
    $ 125万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

This research investigates emotions during the process of learning and reasoning while college students interact with complex learning environments. College students learn about introductory computer literacy or conceptual physics on the web by an intelligent tutoring system, called AutoTutor. AutoTutor helps learners construct explanations that answer difficult questions by interacting with them in natural language and by helping them use simulation environments. AutoTutor has an animated conversational agent and a dialog management facility that attempts to comprehend the learner's contributions and to respond with appropriate dialog moves (short feedback, pumps, hints, prompts for information, assertions, answers to student questions, suggestions for actions, summaries). The emotions of the learner are monitored during this learning process by integrating state-of-the-art affect sensing technology with AutoTutor. Confusion, frustration, boredom, interest, excitement, and other learner emotions are classified on the basis of facial actions, body posture, pressure on the mouse, speech acts in dialog, mastery of the material, and the timing of interactions. One strand of research develops the affect-sensing technologies and tests their validity in classifying the learner emotions. A second line of research investigates whether learning gains and learner impressions are influenced by dialog moves of AutoTutor that are constrained by the learner's emotional state. This research will advance education and natural language dialog technologies through a system that promotes deep learning of material in a fashion that is sensitive to the learners' emotions. A learning environment that monitors learner emotions is likely to be more motivating and personally relevant to the learner.
本研究考察了大学生在复杂的学习环境中进行学习和推理过程中的情绪变化。 大学生通过一个名为AutoTutor的智能辅导系统在网上学习入门计算机知识或概念物理。AutoTutor帮助学习者构建解释,通过自然语言与他们互动并帮助他们使用模拟环境来回答困难的问题。 AutoTutor有一个动画会话代理和一个对话管理工具,试图理解学习者的贡献,并以适当的对话动作(简短的反馈,泵,提示,信息提示,断言,学生问题的答案,行动建议,摘要)作出回应。 在学习过程中,通过将最先进的情感传感技术与AutoTutor相结合,监控学习者的情绪。 困惑,沮丧,无聊,兴趣,兴奋,和其他学习者的情绪进行分类的基础上面部动作,身体姿势,对鼠标的压力,对话中的言语行为,掌握的材料,和互动的时间。 其中一个研究发展了情感感知技术,并测试了它们对学习者情感分类的有效性。第二条线的研究调查是否学习收益和学习者的印象是由AutoTutor的对话移动的学习者的情绪状态的约束的影响。这项研究将通过一个系统推进教育和自然语言对话技术,该系统以一种对学习者情感敏感的方式促进材料的深度学习。 一个监控学习者情绪的学习环境可能更有激励性,并且与学习者个人相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arthur Graesser其他文献

Predicting Learning in a Multi-component Serious Game
  • DOI:
    10.1007/s10758-019-09421-w
  • 发表时间:
    2019-08-26
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Carol M. Forsyth;Arthur Graesser;Keith Millis
  • 通讯作者:
    Keith Millis

Arthur Graesser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arthur Graesser', 18)}}的其他基金

NSCC/LA: Collaborative Research: Modeling Discourse and Social Dynamics in Authoritarian Regimes
NSCC/LA:合作研究:威权政权中的话语和社会动态建模
  • 批准号:
    0904909
  • 财政年份:
    2009
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Inducing, Tracking, and Regulating Confusion and Cognitive Disequilibrium during Complex Learning
复杂学习过程中诱导、跟踪和调节混乱和认知不平衡
  • 批准号:
    0834847
  • 财政年份:
    2009
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Developing Auto Tutor for Computer Literacy and Physics
开发计算机知识和物理自动辅导员
  • 批准号:
    0106965
  • 财政年份:
    2001
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Developing and testing a computer tool that critiques survey questions
开发和测试批评调查问题的计算机工具
  • 批准号:
    9977969
  • 财政年份:
    2000
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Learning and Intelligent Systems: Simulating Tutors with Natural Dialog and Pedagogical Strategies
学习和智能系统:用自然对话和教学策略模拟导师
  • 批准号:
    9720314
  • 财政年份:
    1997
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 125万
  • 项目类别:
    Studentship
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
  • 批准号:
    2416207
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Sustainable wearable e-textiles for remote monitoring of atrial fibrillation patients
用于远程监测心房颤动患者的可持续可穿戴电子纺织品
  • 批准号:
    EP/Y021096/1
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Research Grant
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Research Grant
PAN EUROPEAN ASSESSMENT, MONITORING, AND MITIGATION OF CHEMICAL STRESSORS ON THE HEALTH OF WILD POLLINATORS
泛欧评估、监测和缓解化学胁迫因素对野生传粉者健康的影响
  • 批准号:
    10098159
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    EU-Funded
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Research Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
STTR Phase I: Using Audio Analytics and Sensing to Enhance Broiler Chicken Welfare and Performance by Continuously Monitoring Bird Vocalizations
STTR 第一阶段:使用音频分析和传感,通过持续监测鸡的发声来提高肉鸡的福利和性能
  • 批准号:
    2335590
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了