Learning and Intelligent Systems: CIRCLE: Center for Interdisciplinary Research on Constructive Learning Environments

学习和智能系统:CIRCLE:建设性学习环境跨学科研究中心

基本信息

  • 批准号:
    9720359
  • 负责人:
  • 金额:
    $ 499.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-10-01 至 2003-12-31
  • 项目状态:
    已结题

项目摘要

9720359 Kurt Van Lehn University of Pittsburgh CIRCLE: Center for Interdisciplinary Research on Constructive Learning Environments The Center has three main goals. First, the Center seeks to understand an extremely effective pedagogy, human tutoring. This will be achieved by using protocol analysis, eye tracking and controlled experiments to study human tutors and contrast them to existing computer tutors. The overarching hypothesis is that students learn best when they construct knowledge for themselves. The second goal of the Center is to build and test new generation of computer tutoring systems that encourage students to construct the target knowledge instead of telling it to them. The student's self-construction may need to be delicately guided via prompting, Socratic questioning or other means, This goal will be achieved by adding advanced planning and natural language components to existing intelligent tutoring systems and testing the new tutors in collaborating schools. The Center's third goal is to help integrate this new technology into existing educational practices. This goal will be achieved by working with practitioners and schools throughout the development process, by upgrading tutors that are already in use by thousands of students, and by forming partnerships with other projects, centers and industries. Achieving the three Center goals will impact multiple disciplines. Understanding why human tutors are so effective should have a significant impact on the psychology of learning. Computer science will be advanced by developing systems that can reactively plan natural language hints and questions that get a student to learn. Education will be improved as the Center's constructivist technology and instructional methods prove to be effective in actual use and become widely available.
[9720359] Kurt Van Lehn匹兹堡大学CIRCLE:建设性学习环境跨学科研究中心该中心有三个主要目标。首先,本中心试图了解一种极其有效的教学方法,即人际辅导。这将通过使用协议分析、眼动追踪和控制实验来研究人类导师,并将他们与现有的计算机导师进行对比。最重要的假设是,当学生为自己构建知识时,他们学得最好。该中心的第二个目标是建立和测试新一代的计算机辅导系统,鼓励学生构建目标知识,而不是告诉他们。学生的自我建构可能需要通过提示、苏格拉底式提问或其他方式进行微妙的引导,这一目标将通过在现有的智能辅导系统中添加先进的规划和自然语言组件,并在合作学校中测试新的导师来实现。该中心的第三个目标是帮助将这种新技术整合到现有的教育实践中。这一目标将通过在整个开发过程中与从业者和学校合作,通过升级已经被数千名学生使用的导师,以及通过与其他项目、中心和行业建立伙伴关系来实现。实现中心的三个目标将影响多个学科。理解为什么人类导师如此有效,应该会对学习心理学产生重大影响。计算机科学将通过开发能够反应性地规划自然语言提示和问题以促使学生学习的系统而得到发展。随着中心的建构主义技术和教学方法在实际应用中被证明是有效的,并得到广泛应用,教育将得到改善。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kurt VanLehn其他文献

Kurt VanLehn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kurt VanLehn', 18)}}的其他基金

FW-HTF: The future of classroom work: Automated Teaching Assistants
FW-HTF:课堂工作的未来:自动化助教
  • 批准号:
    1840051
  • 财政年份:
    2018
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
DIP: Graphical Model Construction by System Decomposition: Increasing the Utility of Algebra Story Problem Solving
DIP:通过系统分解构建图形模型:增加代数故事解决问题的效用
  • 批准号:
    1628782
  • 财政年份:
    2016
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
A Meta-cognitive Approach to Teaching Organic Chemistry from Fundamental Principles
从基本原理讲授有机化学的元认知方法
  • 批准号:
    1140901
  • 财政年份:
    2012
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
EXP: Students Authoring Intelligent Tutoring Systems for Constructing Models of Ill-Defined Dynamic Systems
EXP:学生编写智能辅导系统来构建定义不明确的动态系统模型
  • 批准号:
    1123823
  • 财政年份:
    2011
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
Deeper modeling via affective meta-tutoring
通过情感元辅导进行更深入的建模
  • 批准号:
    0910221
  • 财政年份:
    2009
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Continuing Grant
ITR : Tutoring scientific explanations via natural language dialogue
ITR:通过自然语言对话辅导科学解释
  • 批准号:
    0908146
  • 财政年份:
    2008
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Continuing Grant
Supporting Students Attending User Modeling 2007 Conference
支持学生参加 2007 年用户建模会议
  • 批准号:
    0705243
  • 财政年份:
    2007
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
ITR : Tutoring scientific explanations via natural language dialogue
ITR:通过自然语言对话辅导科学解释
  • 批准号:
    0325054
  • 财政年份:
    2004
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Continuing Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313191
  • 财政年份:
    2023
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313192
  • 财政年份:
    2023
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
  • 批准号:
    23K03773
  • 财政年份:
    2023
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: Utilizing Neurophysiological Measures to Better Understand and Improve Engagement and Learning with Intelligent Tutoring Systems
NSF-BSF:利用神经生理学措施通过智能辅导系统更好地理解和改善参与和学习
  • 批准号:
    2141139
  • 财政年份:
    2022
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Continuing Grant
A Multiple-Input-Multiple-Architectural (MIMA) Approach to Improving Learning and Decision Making in Robust Artificial Intelligent Systems (RAIS)
用于改进鲁棒人工智能系统 (RAIS) 中的学习和决策的多输入多架构 (MIMA) 方法
  • 批准号:
    DDG-2020-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Discovery Development Grant
Intelligent Group Decision Systems and Preference Learning
智能群体决策系统和偏好学习
  • 批准号:
    RGPIN-2018-05903
  • 财政年份:
    2022
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Discovery Grants Program - Individual
Using machine learning for model-free intelligent control of complex systems with constraints.
使用机器学习对有约束的复杂系统进行无模型智能控制。
  • 批准号:
    559783-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
  • 批准号:
    RGPIN-2019-05223
  • 财政年份:
    2022
  • 资助金额:
    $ 499.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了