DIP: Graphical Model Construction by System Decomposition: Increasing the Utility of Algebra Story Problem Solving
DIP:通过系统分解构建图形模型:增加代数故事解决问题的效用
基本信息
- 批准号:1628782
- 负责人:
- 金额:$ 134.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project studies a new genre of learning technology that may remove a notorious bottleneck in STEM education: mathematical model construction. These days, computers can solve complex mathematical problems, but humans must still define the problem for the computer, which is called constructing a model of a system. Many students can learn procedural skills, such as solving a quadratic equation, but constructing a model frustrates them because there is no procedure. This effectively stops their progress in math and blocks their entry to STEM professions. That may be why model construction is one of the few practices that appears in both math (CCSSM) and science (NGSS) standards. The key innovation for solving these problems is a new genre of learning technology based on two ideas. First, it emphasizes decomposing the given system description into subsystems. Second, although the final model is a set of algebraic equations, the model is first constructed as a node-link graph that shows which quantities are connected to which relationships. This notation is called TopoMath.TopoMath builds on prior success with the Dragoon intelligent tutoring system, and represents a revision of that system to support a novel graphical representation to allow learners to recognize distinct problem-solving schemata. Stealth assessment using Bayesian Knowledge Tracing will allow feedback on student submitted models in response to word problems in modelling. When a model is represented as a TopoMath graph, it can usually be drawn such that distinct subsystems correspond to distinct subgraphs. This makes it easier for students to understand the relationship between the model and the system that is represents. Moreover, when constructing a model by decomposing a system into subsystems, blank areas in the TopoMath graph suggest which subsystems still need to be modeled. Students can learn model construction schemas by comparing and generalizing systems that have visually similar TopoMath models so that when constructing a model by decomposing a system into subsystems, if a schema matches a subsystem, then a whole section of the model can be filled in without further decomposition. These are just a few of the synergies of combining system decomposition and TopoMath's graphical representation of mathematical models. This project will explore sequences of TopoMath learning activities with the goal of bringing students to model construction mastery with just 20 hours of instruction. The instruction will be developed in the context of remedial college math classes that are equivalent to high school algebra 2 classes. The instruction will include individual, small group and whole class activities using the TopoMath technology. Qualitative analysis of verbal protocols will be undertaken using the Knowledge-Learning-Instruction framework both for system evaluation, and to better understand the processes of learning in model construction that are supported by the system's representations and scaffolds for modeling.
网络学习和未来学习技术计划资助的努力将有助于设想下一代学习技术,并推进我们对人们如何在技术丰富的环境中学习的了解。开发和实施(DIP)项目建立在概念验证工作的基础上,展示了所提出的新型学习技术的可能性,PI团队构建并完善了他们所提出的创新的最小可行示例,使他们能够了解此类技术应该如何设计和使用在未来,并使他们能够回答有关人们如何学习、如何促进或评估学习、and/or how to design设计for learning学习. 该项目研究了一种新的学习技术,可以消除STEM教育中臭名昭着的瓶颈:数学模型构建。 如今,计算机可以解决复杂的数学问题,但人类仍然必须为计算机定义问题,这被称为构建系统的模型。 许多学生可以学习程序技能,例如解二次方程,但构建模型会让他们感到沮丧,因为没有程序。 这有效地阻止了他们在数学方面的进步,并阻止了他们进入STEM专业。 这可能就是为什么模型构造是数学(CCSSM)和科学(NGSS)标准中出现的少数实践之一。 解决这些问题的关键创新是基于两种思想的新型学习技术。 首先,它强调将给定的系统描述分解成子系统。 其次,虽然最终的模型是一组代数方程,但该模型首先被构造为节点链接图,该图显示哪些量与哪些关系相连接。 TopoMath建立在龙骑兵智能辅导系统的成功基础上,代表了该系统的修订版,以支持新的图形表示,使学习者能够识别不同的解决问题的图式。使用贝叶斯知识追踪的隐形评估将允许对学生提交的模型进行反馈,以应对建模中的文字问题。当模型表示为TopoMath图时,通常可以绘制不同的子系统对应不同的子图。 这使学生更容易理解模型和所表示的系统之间的关系。 此外,当通过将系统分解为子系统来构建模型时,TopoMath图中的空白区域表明哪些子系统仍然需要建模。 学生可以通过比较和概括具有视觉上相似的TopoMath模型的系统来学习模型构造模式,以便在通过将系统分解为子系统来构造模型时,如果模式与子系统匹配,则可以填充模型的整个部分而无需进一步分解。 这些只是将系统分解与TopoMath的数学模型图形表示相结合的一些协同作用。 该项目将探索TopoMath学习活动的顺序,目标是让学生在20小时的教学中掌握模型构建。 该指令将在补救大学数学课程的背景下开发,相当于高中代数2课程。 该指令将包括使用TopoMath技术的个人,小组和全班活动。口头协议的定性分析将进行使用的知识,学习,教学框架的系统评估,并更好地了解学习过程中的模型构建,支持系统的表示和支架建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt VanLehn其他文献
Kurt VanLehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt VanLehn', 18)}}的其他基金
FW-HTF: The future of classroom work: Automated Teaching Assistants
FW-HTF:课堂工作的未来:自动化助教
- 批准号:
1840051 - 财政年份:2018
- 资助金额:
$ 134.63万 - 项目类别:
Standard Grant
A Meta-cognitive Approach to Teaching Organic Chemistry from Fundamental Principles
从基本原理讲授有机化学的元认知方法
- 批准号:
1140901 - 财政年份:2012
- 资助金额:
$ 134.63万 - 项目类别:
Standard Grant
EXP: Students Authoring Intelligent Tutoring Systems for Constructing Models of Ill-Defined Dynamic Systems
EXP:学生编写智能辅导系统来构建定义不明确的动态系统模型
- 批准号:
1123823 - 财政年份:2011
- 资助金额:
$ 134.63万 - 项目类别:
Standard Grant
Deeper modeling via affective meta-tutoring
通过情感元辅导进行更深入的建模
- 批准号:
0910221 - 财政年份:2009
- 资助金额:
$ 134.63万 - 项目类别:
Continuing Grant
ITR : Tutoring scientific explanations via natural language dialogue
ITR:通过自然语言对话辅导科学解释
- 批准号:
0908146 - 财政年份:2008
- 资助金额:
$ 134.63万 - 项目类别:
Continuing Grant
Supporting Students Attending User Modeling 2007 Conference
支持学生参加 2007 年用户建模会议
- 批准号:
0705243 - 财政年份:2007
- 资助金额:
$ 134.63万 - 项目类别:
Standard Grant
ITR : Tutoring scientific explanations via natural language dialogue
ITR:通过自然语言对话辅导科学解释
- 批准号:
0325054 - 财政年份:2004
- 资助金额:
$ 134.63万 - 项目类别:
Continuing Grant
Learning and Intelligent Systems: CIRCLE: Center for Interdisciplinary Research on Constructive Learning Environments
学习和智能系统:CIRCLE:建设性学习环境跨学科研究中心
- 批准号:
9720359 - 财政年份:1997
- 资助金额:
$ 134.63万 - 项目类别:
Continuing Grant
相似海外基金
Extremal graphical model selection
极值图形模型选择
- 批准号:
568313-2022 - 财政年份:2022
- 资助金额:
$ 134.63万 - 项目类别:
Postdoctoral Fellowships
A Graphical Species Distribution Model of life history connectivity and multi-scale co-existence of marine species
海洋物种生命史连通性和多尺度共存的图形物种分布模型
- 批准号:
2224702 - 财政年份:2022
- 资助金额:
$ 134.63万 - 项目类别:
Standard Grant
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2020
- 资助金额:
$ 134.63万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2020
- 资助金额:
$ 134.63万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2019
- 资助金额:
$ 134.63万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2018
- 资助金额:
$ 134.63万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2018
- 资助金额:
$ 134.63万 - 项目类别:
Discovery Grants Program - Individual
New developments in the theory of graphical model inference in the Big Data era
大数据时代图模型推理理论新进展
- 批准号:
17K00061 - 财政年份:2017
- 资助金额:
$ 134.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2017
- 资助金额:
$ 134.63万 - 项目类别:
Discovery Grants Program - Individual
Detection of driving fatigue due to long continuous driving based on a graphical model
基于图模型的长时间连续驾驶驾驶疲劳检测
- 批准号:
17K14740 - 财政年份:2017
- 资助金额:
$ 134.63万 - 项目类别:
Grant-in-Aid for Young Scientists (B)