POWRE: New Numerical Algorithms for Particle Transport and Integral Equations

POWRE:粒子输运和积分方程的新数值算法

基本信息

项目摘要

This work is funded through the Professional Opportunities for Women in Research and Education (POWRE) program as a Visiting Professorship Activity. This proposal is for a visiting assistant professor position at the University of Iowa. Under this award, the PI will spend six months at the University of Iowa next Spring and Summer. The host institution will provide financial support for some of the PI's salary, and she is requesting half of her current salary from NSF POWRE funds. The invitation for this visit is important for the PI because there she can extend her current research through collaboration and discussions with well-known scientists in the areas of numerical analysis, computer science, and astronomy. The PI's areas of research are Numerical Methods for Particle Transport Problems and Numerical Methods for Large-Scale Eigenvalue Problems. Particle and radiation transport problems arise in many astronomical phenomena, such as the solar wind, radiation in the outer layers of the sun, and the behavior of dust clouds and nebulae illuminated by stars. (Dust clouds are considered to be the birth-place of stars.) Eigenvalue problems enter into particle transport problems as a way of solving criticality problems; that is, determining for what parameters there can be a self-sustaining reaction. This is of crucial importance in the areas of nuclear reactor design, and also in the initiation of nuclear activity in stars. The PI has developed new algorithms (sequential and parallel) for solving transport equations and eigenvalue problems. Transport equations are integro-differential equations, and the study of these equations can be fruitfully extended by deeper understanding of how the integral and differential terms interact. However, the new applications areas will lead to new equations, and to significantly new methods and ideas. The astronomical applications incorporate a number of new phenomena such as reaction terms, and strong interactions between the particles (or radiation) and the medium through which the particles move. The anticipated outcome from this project will be a deeper understanding of the mathematics arising in differential-integral equations which are related to transport phenoma, better sequential and parallel algorithms for equations in the related applications areas, and improvement of techniques available to astronomers for simulating and studying the activity of stars and the sun.
这项工作是通过研究和教育中的女性专业机会(POWRE)计划作为访问教授活动资助的。申请爱荷华大学客座助理教授一职。根据该奖学金,PI将于明年春夏两季在爱荷华大学学习六个月。主办机构将为PI的部分工资提供经济支持,她要求从NSF power基金中获得目前工资的一半。这次访问的邀请对PI来说很重要,因为在那里她可以通过与数值分析、计算机科学和天文学领域的知名科学家的合作和讨论来扩展她目前的研究。PI的研究领域是粒子输运问题的数值方法和大规模特征值问题的数值方法。粒子和辐射传输问题出现在许多天文现象中,如太阳风、太阳外层的辐射、被恒星照亮的尘埃云和星云的行为。(尘埃云被认为是恒星的诞生地。)特征值问题作为求解临界问题的一种方法进入粒子输运问题;也就是说,确定在什么参数下可以有一个自我维持的反应。这在核反应堆设计领域至关重要,在恒星核活动的开始也是如此。PI开发了新的算法(顺序和并行)来解决传输方程和特征值问题。输运方程是积分-微分方程,通过对积分项和微分项相互作用的深入理解,可以有效地扩展对这些方程的研究。然而,新的应用领域将导致新的方程,以及显著的新方法和思想。天文学上的应用包含了许多新的现象,如反应项,粒子(或辐射)与粒子运动的介质之间的强相互作用。该项目的预期成果将是加深对与输运现象有关的微分积分方程中出现的数学的理解,在相关应用领域中更好的方程的顺序和并行算法,以及天文学家用于模拟和研究恒星和太阳活动的技术的改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suely Oliveira其他文献

FFTs and three-dimensional Poisson solvers for hypercubes
  • DOI:
    10.1016/s0167-8191(05)80100-0
  • 发表时间:
    1991-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Roland A. Sweet;William L. Briggs;Suely Oliveira;Jules L. Porsche;Tom Turnbull
  • 通讯作者:
    Tom Turnbull
Distributed SmSVM Ensemble Learning
分布式 SmSVM 集成学习
  • DOI:
    10.1007/978-3-030-16841-4_2
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeff Hajewski;Suely Oliveira
  • 通讯作者:
    Suely Oliveira
Interpretable Variational Autoencoders for Cognitive Models
用于认知模型的可解释变分自动编码器
Evolving deep autoencoders
不断发展的深度自动编码器
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeff Hajewski;Suely Oliveira;Xiaoyu Xing
  • 通讯作者:
    Xiaoyu Xing
Finding, and Countering, Future Resistance using Bacterial Antibiotic Adversarial Genetic Algorithm (BAAGA)
使用细菌抗生素对抗遗传算法 (BAAGA) 发现并应对未来耐药性

Suely Oliveira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suely Oliveira', 18)}}的其他基金

EXTREEMS-QED: Large Data Analysis and Visualization at the University of Iowa
EXTREEMS-QED:爱荷华大学的大数据分析和可视化
  • 批准号:
    1407216
  • 财政年份:
    2014
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Standard Grant
POWRE: New Numerical Algorithms for Particle Transport and Integral Equations
POWRE:粒子输运和积分方程的新数值算法
  • 批准号:
    9996089
  • 财政年份:
    1999
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Standard Grant
ROW (Researh Planning Grant): Research on Multigrid Algorithms
ROW(研究规划补助金):多重网格算法研究
  • 批准号:
    9528912
  • 财政年份:
    1996
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Standard Grant

相似海外基金

A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Projects
Numerical exploration of new frontiers on primordial black hole formation
原初黑洞形成新领域的数值探索
  • 批准号:
    22KF0168
  • 财政年份:
    2023
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Enabling solid state metal recycling with new numerical techniques
利用新的数值技术实现固态金属回收
  • 批准号:
    DE230100338
  • 财政年份:
    2023
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Early Career Researcher Award
A new approach to reconstruct tsunami history: assessments based on identification and numerical modeling of erosional features
重建海啸历史的新方法:基于侵蚀特征识别和数值模拟的评估
  • 批准号:
    23H01252
  • 财政年份:
    2023
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a new small device for hammering test and numerical experiments based on the defect topology identification method
基于缺陷拓扑识别方法的新型小型锤击试验及数值实验装置研制
  • 批准号:
    22K04283
  • 财政年份:
    2022
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of numerical analysis based on the space-time variational method
基于时空变分法的数值分析新进展
  • 批准号:
    21H04431
  • 财政年份:
    2021
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploring new physics in string theory from numerical analysis in open string field theory
从开弦场论的数值分析探索弦论中的新物理
  • 批准号:
    20K03933
  • 财政年份:
    2020
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Simulation of New Cementitious Composite Materials
新型水泥基复合材料的数值模拟
  • 批准号:
    2440185
  • 财政年份:
    2020
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了