Minimum Distance Methods for Models with Cointegration in Time Series and Short Panels

时间序列和短面板中协整模型的最小距离方法

基本信息

  • 批准号:
    9720675
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2000-01-31
  • 项目状态:
    已结题

项目摘要

9720675 Elliott The objective of this project is to develop minimum distance methods for inference in cointegrated time series regressions and short panel data models. Cointegrated models have found particular favor among applied researchers because of their direct relationship with economic theory, i.e., distinguishing between long-run and short-run dynamics. Minimum distance methods appear to provide ideal methods for estimating and conducting inference on these models. This is very useful as current methods of estimation of cointegrating models have proven quite difficult to extend in directions that are useful to applied econometricians. Methods are often special to the problems of cointegration per se or result in complicated computational methods. In most situations closed form solutions are available for estimation when minimum distance methods are applied. These methods are very simple and well understood enabling fairly simple extension of methods for estimation of cointegrated models in directions that should prove useful in applied work. The particular extensions envisaged for time series models are estimation when there are restrictions on the cointegrating vectors (linear or nonlinear, within or across equation), the presence of stationary variables, and the presence of heteroskedasticity. In the panel models, the project will be to provide and evaluate estimators and rules for inference in short time dimension panel data sets when observations on many individuals are available. The focus of this model is to incorporate as much heterogeneity across individuals as possible. These methods will be extended also in the same direction as the time series models. ??
小行星9720675 这个项目的目标是开发最小距离方法的协整时间序列回归和短面板数据模型的推理。 协整模型在应用研究人员中特别受欢迎,因为它们与经济理论有直接关系,即,区分长期和短期动态。 最小距离方法似乎提供了理想的方法来估计和进行推断这些模型。 这是非常有用的,因为目前估计协整模型的方法已被证明很难扩展到对应用计量经济学家有用的方向。 方法往往是特殊的协整问题本身或导致复杂的计算方法。 在大多数情况下,当应用最小距离方法时,可以获得封闭形式的解来进行估计。 这些方法是非常简单的,很好地理解,使相当简单的扩展方法估计协整模型的方向,应该证明是有用的应用工作。 为时间序列模型设想的特定扩展是估计,当存在对协整向量的限制(线性或非线性,在方程内或方程间),存在平稳变量和存在异方差时。 在面板模型中,该项目将提供和评估估计和推理规则,在短时间维面板数据集时,许多个人的观察是可用的。 该模型的重点是尽可能多地整合个体之间的异质性。 这些方法也将在与时间序列模型相同的方向上扩展。 ??

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Elliott其他文献

TIME SERIES ANALYSIS: NONSTATIONARY AND NONINVERTIBLE DISTRIBUTION THEORY
  • DOI:
    10.1017/s0266466698144055
  • 发表时间:
    1998-08
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Graham Elliott
  • 通讯作者:
    Graham Elliott
Estimation and Testing of Forecast Rationality under Flexible Loss
弹性损失下预测合理性的估计与检验
  • DOI:
    10.1111/0034-6527.00363
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Graham Elliott;Ivana Komunjer;Allan Timmermann
  • 通讯作者:
    Allan Timmermann
Survival time and search time in water: Past, present and future
  • DOI:
    10.1016/j.jtherbio.2022.103349
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Tipton;Elizabeth McCormack;Graham Elliott;Monica Cisternelli;Arthur Allen;Arden C. Turner
  • 通讯作者:
    Arden C. Turner
Complete subset regressions with large-dimensional sets of predictors
  • DOI:
    10.1016/j.jedc.2015.03.004
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Graham Elliott;Antonio Gargano;Allan Timmermann
  • 通讯作者:
    Allan Timmermann

Graham Elliott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Elliott', 18)}}的其他基金

Collaborative Research: Forecast Evaluation and Model Selection in the Presence of Structural Instability
合作研究:结构不稳定情况下的预测评估和模型选择
  • 批准号:
    0647770
  • 财政年份:
    2007
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Continuing Grant

相似海外基金

Construction of models and analysis/design methods for molecular communication systems considering the distance between molecular robots
考虑分子机器人间距离的分子通信系统模型构建及分析/设计方法
  • 批准号:
    22KJ2683
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
  • 批准号:
    RGPIN-2021-03821
  • 财政年份:
    2022
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
  • 批准号:
    DGECR-2021-00218
  • 财政年份:
    2021
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Discovery Launch Supplement
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
  • 批准号:
    RGPIN-2021-03821
  • 财政年份:
    2021
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: III: Deep Learning Methods for Protein Inter-residue Distance Prediction
CRII:III:蛋白质残基间距离预测的深度学习方法
  • 批准号:
    1948117
  • 财政年份:
    2020
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
dCortools: Distance Correlation Methods for Detecting Nonlinear Associations in High-Dimensional Molecular Data
dCortools:用于检测高维分子数据中非线性关联的距离相关方法
  • 批准号:
    417754611
  • 财政年份:
    2019
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Research Grants
Distance and correlation modeling for information sequences with synchronization errors and coding methods
具有同步误差的信息序列的距离和相关性建模及编码方法
  • 批准号:
    18K04125
  • 财政年份:
    2018
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Paramagetic metal ion based ESR distance methods for measuring ion-channel conformations in cells and in vitro
基于顺磁金属离子的 ESR 距离方法,用于测量细胞内和体外离子通道构象
  • 批准号:
    1613007
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
A new distance measure for label correlations in multi-label classification and the application to nearest neighbour methods
多标签分类中标签相关性的新距离度量及其在最近邻方法中的应用
  • 批准号:
    475046-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Contrasting distance sampling & block-survey methods for obtaining aerial photography of moose in Northeastern Minnesota
对比距离采样
  • 批准号:
    479028-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Industrial Postgraduate Scholarships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了