Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
基本信息
- 批准号:RGPIN-2021-03821
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The current proposal requests funding in support of the PI's research program, which has deep ties to the most important areas of Algebraic, Arithmetic and Differential Geometry. It deals with rational points, Diophantine approximation and higher dimensional birational geometry. There is an influence from Mathematical Physics. The requested funds will provide a secure source of funding for postdoctoral fellows, graduate students and undergraduate research assistants. As impact, the PI's trainees will obtain transferable skills that will enable them to obtain research positions within government, industry and higher education. The PI and his team will disseminate their research findings at academic conferences and workshops. The PI's program is impacted by Vojta's number theoretic interpretation of Nevanlinna's value distribution theory. It intersects with higher dimensional birational geometry, including K--stability, and ideas from Kahler geometry. The PI also has scientific interests that are in the direction of Abelian varieties, vector bundles, and combinatorial and computational aspects of Algebra, Number Theory and Representation Theory. The PI and his team will work on questions that surround Vojta's Main Conjecture, stability and positivity for line bundles and the many forms of Schmidt's Subspace Theorem. In a parallel direction, they will study the rich interactions amongst Abelian varieties, vector bundles, algebraic curves and Lie algebras. Finally, there is an aspect that deals with effective computational methods for Algebraic Geometry, Number Theory and Commutative Algebra. The PI will ensure equal opportunity, in terms of Equity, Diversity and Inclusion, for members of historically underrepresented groups. The PI and his trainees will plan outreach activities for students in STEM fields. Another of the PI's objectives is to foster collaborative scientific interactions amongst researchers within the Montreal--Ottawa--Kingston--Toronto corridor. Coordinating with the Centre de Recherches Mathematiques (Montreal) and its laboratories, together with the Fields Institute (Toronto) will be an overarching component of the PI's plan to develop a long term continued development of highly qualified personnel. The main scientific content of the PI's proposal places an emphasis on the following more specialized areas of Geometry, Number Theory and Abstract Algebra. (i) Linear series, measures of positivity thereof and Newton--Okounkov bodies. (ii) Higher dimensional birational algebraic geometry (including K--stability, the Minimal Model Program and Geometric Invariant Theory). (iii) Diophantine arithmetic aspects of projective varieties and moduli spaces. (iv) Abelian varieties, Calabi--Yau manifolds and algebraic curves. (v) Computational computer algebra. These topics continue to be at the forefront of research that is at the intersection of Algebra, Geometry and Number Theory.
目前的提案要求为PI的研究计划提供资金支持,该计划与代数、算术和微分几何等最重要的领域有着密切的联系。它涉及有理点、丢番图逼近和高维双曲几何。这其中有数学物理的影响。申请的资金将为博士后研究员、研究生和本科生研究助理提供可靠的资金来源。作为影响,PI的受训人员将获得可转让的技能,使他们能够在政府、行业和高等教育中获得研究职位。国际和平研究所和他的团队将在学术会议和研讨会上传播他们的研究成果。《少年派》的方案受到了伏伊塔对纳瓦林纳价值分配理论的数论解释的影响。它与高维双曲几何相交,包括K-稳定性,以及Kahler几何的思想。PI还对阿贝尔变种、向量丛以及代数、数论和表示论的组合和计算方面的科学感兴趣。PI和他的团队将围绕Vojta的主要猜想、线丛的稳定性和正性以及施密特子空间定理的多种形式开展工作。在平行的方向上,他们将研究阿贝尔簇、矢丛、代数曲线和李代数之间的丰富相互作用。最后,还有一个方面涉及到代数几何、数论和交换代数的有效计算方法。国际和平协会将确保在公平、多样性和包容性方面为历史上代表性不足的群体的成员提供平等机会。国际和平协会和他的学员将为STEM领域的学生计划外展活动。国际和平研究所的另一个目标是促进蒙特利尔-渥太华-金斯敦-多伦多走廊内研究人员之间的协作科学互动。与数学研究中心(蒙特利尔)及其实验室以及实地研究所(多伦多)进行协调,将是促进高素质人才长期持续发展计划的主要组成部分。国际学生联合会建议的主要科学内容侧重于以下更专业的领域:几何、数论和抽象代数。(I)线性级数及其正性度量和牛顿-奥库科夫体。(Ii)高维二次代数几何(包括K-稳定性、最小模型程序和几何不变理论)。(Iii)射影簇和模空间的丢番图算术方面。(Iv)Abel簇、Calabi-Yau流形和代数曲线。(V)计算计算机代数。这些主题继续处于代数学、几何学和数论交叉研究的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grieve, Nathan其他文献
Grieve, Nathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grieve, Nathan', 18)}}的其他基金
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
DGECR-2021-00218 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
- 批准号:
2402436 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant