Molecular Mechanisms of Mitochondrial DNA Inheritance
线粒体DNA遗传的分子机制
基本信息
- 批准号:9724143
- 负责人:
- 金额:$ 10.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-10-01 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9724143 Nunnari Accurate transmission of subcellular organelles during eukaryotic cell division is an essential and regulated process. In the case of the semi-autonomous respiratory organelle, the mitochondrion, this process is more complicated because, in order for progeny cells to be respiratory competent, both the organelle and its genome must be accurately transmitted. Although it is widely accepted that during cell division the partitioning of mitochondria is an active process dependent on the cytoskeleton, one fundamental question that remains unanswered is what additional mechanisms are required for the partitioning and distribution of mitochondrial DNA (mtDNA) both within the organelle and to daughter cells. The long term goal of the proposed work is to determine the cellular and molecular mechanisms responsible for mtDNA inheritance. These questions will be addressed using the simple eukaryote, Saccharomyces cerevisiae (budding yeast). From a wealth of genetic data obtained using this organism, it is clear that mtDNA inheritance is a non-random process. The ability to visualize both the organelle and mtDNA in vivo, and the opportunity to combine both genetic and biochemical approaches to understanding function, make S. cerevisiae an excellent model system for examining the cellular and molecular mechanisms involved in mitochondrial inheritance. It has recently been shown that when S. cerevisiae haploid cells fuse, mitochondrial fusion also occurs and a single, continuous dynamic mitochondrial reticulum is created in the zygote. While mitochondrial matrix proteins are able to freely diffuse within this reticulum, the diffusion of inner membrane-associated mtDNA is severely restricted. Although the movement of mtDNA within the organelle is restricted, mtDNA does enter emerging buds with the mitochondria. Elucidating the molecular mechanisms underlying mtDNA limited diffusion is critical to understanding the exact mechanisms for mtDNA inheri tance. The specific aims of this proposal are directed at further characterizing this mechanism and at identifying and determining the mechanisms of action of the proteins in S. cerevisiae that mediate mtDNA inheritance. Specifically, mtDNA movement within cells will be characterized by time lapsed imaging of a fluorescently tagged mtDNA-binding protein. The molecular components responsible for the limited diffusion and segregation of mtDNA will be identified using both genetic and biochemical approaches. Conditional mutants that are unable to stably maintain the mitochondrial genome during mitosis will be isolated. The mtDNA-protein complexes will be purified and characterized biochemically. Associated proteins will be identified using tandem mass spectrometry. The role of these proteins in mtDNA segregation will be determined using genetic, biochemical, and microscopic approaches. When cells divide, the various essential components (genes, cytoplasm, organelles) of the cell must be apportioned among the two daughter cells. In the case of the mitochondrion, the organelle possesses its own genome (in the form of multiple copies of mitochondrial DNA), and this must also be apportioned. Prior work has shown that the mtDNA distributes non-randomly, suggesting that mechanisms exist to somehow tether the DNA so that the copies do not intermix spatially within the organelle. This project will shed light on just how this occurs. ***
9724143 Nunnari在真核细胞分裂过程中,亚细胞器的准确传递是一个必要的和受调控的过程。对于半自主的呼吸细胞器,即线粒体,这个过程更加复杂,因为为了让后代细胞具有呼吸能力,细胞器及其基因组都必须被准确地传递。尽管人们普遍认为,在细胞分裂过程中,线粒体的分裂是一个依赖于细胞骨架的活跃过程,但一个基本的问题是,线粒体DNA(MtDNA)在细胞器内和子细胞中的分裂和分布需要什么额外的机制才能解决。这项拟议工作的长期目标是确定线粒体DNA遗传的细胞和分子机制。这些问题将用简单的真核生物--酿酒酵母(芽殖酵母)来解决。从利用这种有机体获得的大量遗传数据中,很明显线粒体DNA的遗传是一个非随机的过程。在体内显示细胞器和线粒体DNA的能力,以及结合遗传和生化方法了解功能的机会,使酿酒酵母成为研究线粒体遗传所涉及的细胞和分子机制的极好的模型系统。最近的研究表明,当酿酒酵母单倍体细胞融合时,线粒体也会发生融合,并在受精卵中产生一个单一的、连续的动态线粒体网。虽然线粒体基质蛋白能够在这个网状结构内自由扩散,但与内膜相关的mtDNA的扩散受到严格限制。尽管线粒体DNA在细胞器内的运动受到限制,但线粒体确实进入了萌芽。阐明线粒体DNA限制性扩散的分子机制对于理解线粒体DNA遗传的确切机制至关重要。这项建议的具体目的是为了进一步表征这一机制,并识别和确定酿酒酵母中介导线粒体DNA遗传的蛋白质的作用机制。具体地说,线粒体DNA在细胞内的移动将通过对带有荧光标记的线粒体DNA结合蛋白的延时成像来表征。将使用遗传和生化方法确定造成线粒体DNA有限扩散和分离的分子成分。在有丝分裂过程中不能稳定保持线粒体基因组的条件突变体将被分离。线粒体DNA-蛋白质复合体将被提纯并进行生化表征。相关蛋白质将使用串联质谱仪进行鉴定。这些蛋白质在线粒体DNA分离中的作用将通过遗传、生化和显微方法来确定。当细胞分裂时,细胞的各种基本成分(基因、细胞质、细胞器)必须在两个子细胞之间分配。就线粒体而言,细胞器拥有自己的基因组(以线粒体DNA的多个副本的形式),这也必须被分配。先前的工作已经表明,线粒体DNA是非随机分布的,这表明存在以某种方式拴住DNA的机制,以便拷贝不会在细胞器内在空间上混合。这个项目将阐明这种情况是如何发生的。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jodi Nunnari其他文献
Mitochondria at the crossroads of health and disease
线粒体:健康与疾病的十字路口
- DOI:
10.1016/j.cell.2024.04.037 - 发表时间:
2024-05-23 - 期刊:
- 影响因子:42.500
- 作者:
Anu Suomalainen;Jodi Nunnari - 通讯作者:
Jodi Nunnari
Mitochondrial Behavior
- DOI:
10.1016/j.bpj.2018.11.1611 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Jodi Nunnari - 通讯作者:
Jodi Nunnari
Jodi Nunnari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jodi Nunnari', 18)}}的其他基金
Role of the Dynamin-Related GTPase, Mgm1p, in Mitochondrial Morphology
动力相关 GTP 酶 Mgm1p 在线粒体形态学中的作用
- 批准号:
0110899 - 财政年份:2001
- 资助金额:
$ 10.95万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 10.95万 - 项目类别:
Elucidation of molecular mechanisms and application to morbidities of mitochondrial neogenesis induced extremely low frequency weak electromagnetic fields
阐明极低频弱电磁场引起的线粒体新生发病的分子机制及其应用
- 批准号:
23K18273 - 财政年份:2023
- 资助金额:
$ 10.95万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The mitochondrial delta opioid receptor: role, targeting and molecular mechanisms
线粒体δ阿片受体:作用、靶向和分子机制
- 批准号:
478864 - 财政年份:2023
- 资助金额:
$ 10.95万 - 项目类别:
Operating Grants
Mitochondrial cell biology: Understanding the molecular mechanisms and functions of mitochondrial dynamics and membrane contact sites
线粒体细胞生物学:了解线粒体动力学和膜接触位点的分子机制和功能
- 批准号:
MC_UU_00028/5 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Intramural
Investigating the molecular mechanisms of Ca2+ selectivity and Ca2+ potentiation of the mitochondrial calcium uniporter
研究线粒体钙单向转运蛋白 Ca2 选择性和 Ca2 增强的分子机制
- 批准号:
10535187 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
The molecular coordination of MQC mechanisms regulating mitochondrial protein homeostasis in skeletal muscle
MQC机制调节骨骼肌线粒体蛋白稳态的分子协调
- 批准号:
569839-2022 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Postgraduate Scholarships - Doctoral
Molecular Mechanisms of The Human Mitochondrial ABC Transporter ABCB10
人类线粒体 ABC 转运蛋白 ABCB10 的分子机制
- 批准号:
10596638 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Defining Structural and Molecular Mechanisms of The Human Multifunctional Mitochondrial Protease, LONP1
定义人类多功能线粒体蛋白酶 LONP1 的结构和分子机制
- 批准号:
10549721 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Investigating the molecular mechanisms of Ca2+ selectivity and Ca2+ potentiation of the mitochondrial calcium uniporter
研究线粒体钙单向转运蛋白 Ca2 选择性和 Ca2 增强的分子机制
- 批准号:
10738734 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Defining Structural and Molecular Mechanisms of The Human Multifunctional Mitochondrial Protease, LONP1
定义人类多功能线粒体蛋白酶 LONP1 的结构和分子机制
- 批准号:
10389398 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别: