Collaborative Research: Experimental and Theoretical Study of Crack Dynamics in Ice
合作研究:冰裂纹动力学的实验和理论研究
基本信息
- 批准号:9726412
- 负责人:
- 金额:$ 12.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2000-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Experimental studies of the physical processes that govern the dynamic fracture of ice will be conducted. The study is motivated by the need to understand the striking difference between velocities of cracks in freshwater ice and in saline ice (one-to-three orders of magnitude). Besides its importance for the ice physics, the study is essential for engineering problems involving ice-structure interactions and ice-breaking operations. Several groups of researchers recently discovered that maximal speeds of fracture propagation in the saline ice are one-to-three orders of magnitude lower than the ones in the freshwater ice. Low crack speeds in the saline ice may significantly increase the ice forces (due to low rates of ice fragmentation). They should also be taken into account in dynamics of very large masses of ice (motion of glaciers, drift of sea ice). The experimental results recently obtained at Ice Research Laboratory of Dartmouth College clearly indicate that the liquid inclusions of unfrozen saline water in saline ice strongly retard crack propagation. Yet, the physical mechanisms of this retardation are not understood. The data and its preliminary analysis point to several possible mechanisms of crack deceleration: elastic interactions between cracks and liquid inclusions; dissipation of energy due to diffusive motion of liquid in the network of pores and cracks; sonic wave attenuation in liquid inclusions; inertia effects due to movements of water in pores; negative capillary pressure of liquid "patches' left behind the crack tip. These mechanisms will be examined in carefully designed experiments and, in parallel, by a theoretical analysis. The experiments to be conducted at Dartmouth ( Ice Research Laboratory), will include measurements of crack velocity in and the dynamic fracture toughness of ice samples with artificial pores of various sizes and shapes that are filled with liquids of different density, viscosity and surface tension. A parallel theoretical investiga tion, to be done at Tufts University, will include thorough analyses of the physical mechanisms listed above. Close collaboration between the theoretical work at Tufts and the experimental program at Dartmouth is planned. Theoretical ideas will be tested in experiments designed to identify the relative importance of several micromechanisms. The acquired data will then feed and correct the theoretical modeling. The combined experimental-theoretical approach is necessary due to the difficulty of the problem of dynamic interaction between cracks and fluids in pores, and due to the multiplicity of possible micro mechanisms. When accomplished, the study will explain and quantitatively model very slow crack speeds in sea ice. This will have important engineering applications. High resistance of sea water ice to dynamic fracture and very slow crack speeds (as compared to the ones in fresh water ice) determine dynamic forces in ice during its crushing and fragmentation (ice-structure interactions; ice breaking operations and their limitations due to very slow crack speed, etc.). The results will also be relevant for the dynamic fracture of materials other than ice that are either fluid-saturated or contain fine liquid droplets. The examples are rocks and, possibly, concrete. Another possible application is the dynamic fracture of geomaterials containing inclusions of oil or kerosene.
将对冰的动态破裂的物理过程进行实验研究。 这项研究的动机是需要了解淡水冰和盐冰的裂纹速度之间的显着差异(一到三个数量级)。 除了对冰物理学的重要性外,这项研究对涉及冰-结构相互作用和破冰作业的工程问题也是必不可少的。 几组研究人员最近发现,盐水冰中裂缝扩展的最大速度比淡水冰中的速度低一到三个数量级。 盐冰的低破裂速度可能会显著增加冰力(由于冰破碎率低)。 在大冰块的动态(冰川运动、海冰漂移)中也应考虑到这些因素。 达特茅斯学院冰研究实验室最近获得的实验结果清楚地表明,盐冰中未冻盐水的液体包裹体强烈地阻碍裂纹扩展。然而,这种延迟的物理机制尚不清楚。 数据及其初步分析指出了几种可能的裂纹减速机制:裂纹和液体包裹体之间的弹性相互作用;由于孔隙和裂纹网络中液体的扩散运动而导致的能量耗散;液体包裹体中的声波衰减;由于孔隙中水的运动而导致的惯性效应;在裂纹尖端后面留下的液体“补丁”的负毛细压力。这些机制将在精心设计的实验中进行研究,并同时进行理论分析。 将在达特茅斯(冰研究实验室)进行的实验将包括测量冰样品的破裂速度和动态断裂韧性,冰样品具有各种大小和形状的人造孔,孔中充满不同密度、粘度和表面张力的液体。 塔夫茨大学将进行一项平行的理论研究,其中将包括对上述物理机制的彻底分析。 塔夫茨大学的理论工作和达特茅斯大学的实验项目之间的密切合作正在计划之中。 理论思想将在旨在确定几个微观机制的相对重要性的实验中进行测试。 然后,所获取的数据将馈送并校正理论建模。由于孔隙中裂纹和流体之间的动态相互作用问题的困难,以及由于可能的微观机制的多样性,实验-理论相结合的方法是必要的。 完成后,该研究将解释并定量模拟海冰中非常缓慢的裂缝速度。 这将有重要的工程应用。 海水冰对动态断裂的高阻力和非常慢的断裂速度(与淡水冰相比)决定了冰在破碎和破碎过程中的动态力(冰-结构相互作用;由于非常慢的断裂速度,破冰操作及其限制等)。 结果也将是相关的动态断裂的材料,而不是冰,无论是流体饱和或含有细液滴。 这些例子是岩石,也可能是混凝土。 另一个可能的应用是含有油或煤油夹杂物的地质材料的动态断裂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Kachanov其他文献
On the effective properties of random microstructures and cross-property connections for them
关于随机微观结构的有效特性及其跨特性连接
- DOI:
10.1016/j.ijengsci.2024.104061 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:5.700
- 作者:
Damian Stefaniuk;Mark Kachanov - 通讯作者:
Mark Kachanov
On the effective properties of matrix composites: The role of geometric factors in relation to property contrast
关于矩阵复合材料的有效性能:几何因素与性能对比相关的作用
- DOI:
10.1016/j.ijengsci.2024.104156 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Andrew Hollett;Mark Kachanov - 通讯作者:
Mark Kachanov
Compliance of star-like cracks: non-equivalence to holes, and the effect of random shape irregularities
- DOI:
10.1007/s10704-011-9611-0 - 发表时间:
2011-07-19 - 期刊:
- 影响因子:2.500
- 作者:
William Fauriat;Mark Kachanov - 通讯作者:
Mark Kachanov
Anisotropic Material with Arbitrarily Oriented Cracks and Elliptical Holes: Effective Elastic Moduli
- DOI:
10.1023/a:1007598017845 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.500
- 作者:
Igor Tsukrov;Mark Kachanov - 通讯作者:
Mark Kachanov
On Calculation of SIFs for Circular and Moderately Non-Circular Cracks
- DOI:
10.1023/a:1007541916027 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.500
- 作者:
Edgar Karapetian;Mark Kachanov - 通讯作者:
Mark Kachanov
Mark Kachanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Kachanov', 18)}}的其他基金
Nanoelectromechanics of Piezoelectric Indentation and Applications to Scanning Probe Microcopies
压电压痕的纳米机电及其在扫描探针显微镜中的应用
- 批准号:
0509936 - 财政年份:2005
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Solids with Cracks and Pores of Various Shapes: Wavespeeds, Microfracturing Patterns and Proper Interpretation of Experimental Data
具有各种形状的裂纹和孔隙的固体:波速、微断裂模式和实验数据的正确解释
- 批准号:
9619664 - 财政年份:1997
- 资助金额:
$ 12.75万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
- 批准号:
2240418 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant














{{item.name}}会员




