Numerical and Theoretical Analysis of Shallow Water Flow with Applications to the Global Oceanic Circulation
浅水流的数值和理论分析及其在全球海洋环流中的应用
基本信息
- 批准号:9730518
- 负责人:
- 金额:$ 6.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-03-15 至 2000-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9730518 Knio The project is for numerical and theoretical study of the role of gravity waves in the long-time evolution of the global oceanic circulation. The model used is SEOM developed at Rutgers University, and an multiple-pressure- variable approach will be implemented. It would lead to an order-of-magnitude enhancement in the efficiency of SEOM, thus allowing extended high-resolution ocean simulations that include adequate representation of free-surface phenomena. The model will first be used for two-dimensional simulations of tidal circulation in the global ocean. After the model is optimized, extended three-dimensional simulations of the global wind-driven circulation will be performed.
9730518 KNIO该项目是对重力波在全球海洋环流长期演变中的作用进行数值和理论研究。所使用的模型是罗格斯大学开发的SEOM,并将实施多压力变量方法。这将导致SEOM效率的数量级提高,从而允许扩展高分辨率海洋模拟,其中包括对自由表面现象的充分表示。该模型将首先用于对全球海洋中的潮汐循环进行二维模拟。在模式优化后,将对全球风生环流进行扩展的三维模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Knio其他文献
Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos
- DOI:
10.1007/s10236-020-01382-4 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:1.900
- 作者:
Adil Siripatana;Olivier Le Maitre;Omar Knio;Clint Dawson;Ibrahim Hoteit - 通讯作者:
Ibrahim Hoteit
Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC
- DOI:
10.1007/s10236-017-1074-z - 发表时间:
2017-06-08 - 期刊:
- 影响因子:1.900
- 作者:
Adil Siripatana;Talea Mayo;Ihab Sraj;Omar Knio;Clint Dawson;Olivier Le Maitre;Ibrahim Hoteit - 通讯作者:
Ibrahim Hoteit
Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours
- DOI:
10.1007/s10596-024-10288-9 - 发表时间:
2024-05-09 - 期刊:
- 影响因子:2.000
- 作者:
Samah El Mohtar;Olivier Le Maître;Omar Knio;Ibrahim Hoteit - 通讯作者:
Ibrahim Hoteit
Identification of moving sources in stochastic flow fields: A bayesian inferential approach with application to marine traffic in the mediterranean sea
- DOI:
10.1007/s10596-025-10350-0 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:2.000
- 作者:
Issam Lakkis;Alexios Rustom;Mohamad Abed El Rahman Hammoud;Leila Issa;Omar Knio;Olivier Le Maitre;Ibrahim Hoteit - 通讯作者:
Ibrahim Hoteit
Downscaling using CDAnet under observational and model noise: the Rayleigh-Bénard convection paradigm
- DOI:
10.1007/s10596-024-10337-3 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:2.000
- 作者:
Mohamad Abed El Rahman Hammoud;Edriss S. Titi;Ibrahim Hoteit;Omar Knio - 通讯作者:
Omar Knio
Omar Knio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omar Knio', 18)}}的其他基金
U.S.-Germany Cooperative Research: Numerical Simulation of Complex Flows Using Asymptotic-Based Schemes
美德合作研究:使用渐近方案对复杂流动进行数值模拟
- 批准号:
9725923 - 财政年份:1998
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Three-Dimensional Particle Methods for Parallel Architectures
并行架构的三维粒子方法
- 批准号:
9424432 - 财政年份:1995
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
CDS&E: Theoretical, Numerical and Experimental Analysis of Gas-Ion Energy Exchange in Ion Mobility for the Separation of Polyatomic Ions
CDS
- 批准号:
2203968 - 财政年份:2022
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2107934 - 财政年份:2021
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical and numerical analysis for a phase-field model describing the crack growth phenomenon
描述裂纹扩展现象的相场模型的理论和数值分析
- 批准号:
19K14605 - 财政年份:2019
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research toward the practical use of Sinc numerical methods based on theoretical analysis
基于理论分析的Sinc数值方法的实用化研究
- 批准号:
22860026 - 财政年份:2010
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Organization of excitable dynamics in hierarchical networks - Theoretical analysis, numerical simulation and application to neuroscience
分层网络中可兴奋动力学的组织 - 理论分析、数值模拟及其在神经科学中的应用
- 批准号:
156244915 - 财政年份:2009
- 资助金额:
$ 6.8万 - 项目类别:
Research Grants
Theoretical research on the numerical analysis for differential equations based on the convergence theorem of Newton's method
基于牛顿法收敛定理的微分方程数值分析理论研究
- 批准号:
17540103 - 财政年份:2005
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydrodynamic instabilities and entrainment processes in density-stratified two-layer exchange flows over a submerged sill: theoretical analysis, numerical and physical experiments
水下基台上密度分层两层交换流中的水动力不稳定性和夹带过程:理论分析、数值和物理实验
- 批准号:
5440733 - 财政年份:2004
- 资助金额:
$ 6.8万 - 项目类别:
Research Grants
Nonlinear partial differential equations: Theoretical and numerical analysis
非线性偏微分方程:理论和数值分析
- 批准号:
5363386 - 财政年份:2002
- 资助金额:
$ 6.8万 - 项目类别:
Research Units