Mesoscale Ensemble Forecasting and Predictability Studies
中尺度集合预报和可预测性研究
基本信息
- 批准号:9730985
- 负责人:
- 金额:$ 32.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-11-15 至 2002-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An ensemble forecast is a technique in which a numerical forecast model is used to generate several forecasts based on different initial conditions. It has been found that if the forecasts are consistent, then this indicates a more reliable forecast than if the forecasts diverge. While such techniques have been developed for synoptic and climate models, application of ensemble forecasts to local-scale numerical models is still a very new field.The fundamental goal of this research is to investigate the feasibility and usefulness of an ensemble approach in mesoscale prediction. Specifically, the Principal Investigator will investigate the advantages and limitations of ensemble versus deterministic forecasting in mesoscale models at high resolution. To this end, an advanced numerical forecast model will be used to address a range of issues pertaining to short-range ensemble forecasting, including those concerning perturbation strategies, ensemble configuration, and the structure and evolution of initial errors. The design of an ensemble forecasting system for mesoscale systems poses many challenges. Perhaps the most important concerns the initialization of an ensemble. The Principal Investigator will compare two different approaches for constructing the initial perturbations: a) the Monte-Carlo method based on observing systems simulation experiments, and b) the breeding of growing modes method. He will also investigate the importance of perturbing different parameters and coefficients in model physics, as well as perturbation of surface fields such as topography and sea surface temperature. The role of perturbing lateral boundary conditions will also be examined as part of this study. Other issues related to ensemble forecasting, such as minimum size of an ensemble, dependency of ensemble performance on resolution, and structure and growth of initial errors will be addressed. The aforementioned ensemble studies will be carried out on a total of ten cases, split evenly between summer and winter situations. A number of validation and evaluation techniques will be utilized to document the performance and characteristics of the ensembles. Particular attention will be paid to the reliability of ensemble-derived probability estimates and quantitative precipitation forecasts. Successful completion of this research will advance capabilities in short-term local weather forecasting.
集合预报是一种使用数值预报模式根据不同的初始条件生成多个预报的技术。 已经发现,如果预测是一致的,那么这表明预测比预测发散更可靠。 虽然这些技术已经发展到天气和气候模式,集合预报应用于局地尺度数值模式仍然是一个非常新的领域,本研究的基本目标是调查的集合方法在中尺度预报的可行性和有用性。 具体而言,首席研究员将调查集合与高分辨率中尺度模式中的确定性预报的优点和局限性。 为此,将使用一种先进的数值预报模式来处理与短期集合预报有关的一系列问题,包括与扰动战略、集合配置以及初始误差的结构和演变有关的问题。 中尺度系统集合预报系统的设计提出了许多挑战。 也许最重要的是关于集合的初始化。 主要研究者将比较用于构建初始扰动的两种不同方法:a)基于观测系统模拟实验的蒙特-卡罗方法,以及B)生长模式繁殖方法。他还将研究扰动模型物理学中不同参数和系数的重要性,以及地形和海面温度等表面场的扰动。 扰动侧边界条件的作用也将作为本研究的一部分进行研究。 与集合预报有关的其他问题,如集合的最小尺寸,集合性能对分辨率的依赖性,以及初始误差的结构和增长将得到解决。 上述总体研究将在总共10种情况下进行,平均分配在夏季和冬季情况下。 将利用一些验证和评价技术来记录这些系统的性能和特点。 将特别注意集合得出的概率估计和定量降水预报的可靠性。 这项研究的成功完成将提高短期当地天气预报的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohan Ramamurthy其他文献
Mohan Ramamurthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohan Ramamurthy', 18)}}的其他基金
Unidata: Next-generation Data Services and Workflows to Advance Geoscience Research and Education
Unidata:推动地球科学研究和教育的下一代数据服务和工作流程
- 批准号:
1901712 - 财政年份:2019
- 资助金额:
$ 32.37万 - 项目类别:
Continuing Grant
2018 Unidata Users Workshop Reducing Time to Science: Evolving Workflows for Geoscience Research and Education; Boulder, Colorado; June 25-28, 2018
2018 Unidata 用户研讨会减少科学时间:不断发展的地球科学研究和教育工作流程;
- 批准号:
1822272 - 财政年份:2018
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
Workshop: Modeling Research in the Cloud; Boulder Colorado; Spring 2017
研讨会:云中的建模研究;
- 批准号:
1651316 - 财政年份:2016
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
EarthCube Science Support Office (ESSO)
EarthCube科学支持办公室(ESSO)
- 批准号:
1623751 - 财政年份:2016
- 资助金额:
$ 32.37万 - 项目类别:
Cooperative Agreement
Collaborative Research: SI2-SSI: Big Weather Web: A Common and Sustainable Big Data Infrastructure in Support of Weather Prediction Research and Education in Universities
合作研究:SI2-SSI:大天气网:支持大学天气预报研究和教育的通用且可持续的大数据基础设施
- 批准号:
1450180 - 财政年份:2015
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
2015 Unidata Users Workshop Data-Driven Geoscience: Applications, Opportunities, Trends and Challenges; June 22-25, 2015; UCAR Facilities in Boulder, CO
2015 Unidata 用户研讨会数据驱动的地球科学:应用、机遇、趋势和挑战;
- 批准号:
1535378 - 财政年份:2015
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
Unidata 2018: Transforming Geoscience through Innovative Data Services
Unidata 2018:通过创新数据服务改变地球科学
- 批准号:
1344155 - 财政年份:2014
- 资助金额:
$ 32.37万 - 项目类别:
Continuing Grant
Shaping the Development of EarthCube to Enable Advances in Data Assimilation and Ensemble Prediction Workshop; Boulder, Colorado; December 17-18, 2012
塑造 EarthCube 的发展以推动数据同化和集合预测的进步研讨会;
- 批准号:
1266399 - 财政年份:2012
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
2012 Unidata Users Workshop: Navigating Earth System Science Data; Boulder, CO; July 9-13, 2012
2012 Unidata 用户研讨会:导航地球系统科学数据;
- 批准号:
1227949 - 财政年份:2012
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
Unidata 2013: A Transformative Community Facility for the Atmospheric and Related Sciences
Unidata 2013:大气及相关科学的变革性社区设施
- 批准号:
0833450 - 财政年份:2008
- 资助金额:
$ 32.37万 - 项目类别:
Continuing Grant
相似海外基金
Development of an improved hourly ensemble streamflow forecasting system for flood forecasting on small watersheds
开发改进的每小时集合水流预报系统,用于小流域洪水预报
- 批准号:
560780-2020 - 财政年份:2022
- 资助金额:
$ 32.37万 - 项目类别:
Alliance Grants
Seasonal Ice Forecasting using an ensemble approach
使用集合方法进行季节性冰预报
- 批准号:
562728-2021 - 财政年份:2021
- 资助金额:
$ 32.37万 - 项目类别:
University Undergraduate Student Research Awards
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
- 批准号:
21H01431 - 财政年份:2021
- 资助金额:
$ 32.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Examining ensemble machine-learning approaches to improve precipitation forecasting
检查集合机器学习方法以改进降水预报
- 批准号:
568786-2021 - 财政年份:2021
- 资助金额:
$ 32.37万 - 项目类别:
Alliance Grants
Development of an improved hourly ensemble streamflow forecasting system for flood forecasting on small watersheds
开发改进的每小时集合水流预报系统,用于小流域洪水预报
- 批准号:
560780-2020 - 财政年份:2021
- 资助金额:
$ 32.37万 - 项目类别:
Alliance Grants
Workshop: Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System; NJIT, March, 2018
研讨会:日地系统可靠集合预报路线图;
- 批准号:
1812964 - 财政年份:2018
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
CyberSEES: Type 1: Cyber-Enabled Ensemble Data Assimilation for Drought Monitoring, Forecasting and Recovery
CyberSEES:类型 1:用于干旱监测、预报和恢复的网络集成数据同化
- 批准号:
1830955 - 财政年份:2018
- 资助金额:
$ 32.37万 - 项目类别:
Standard Grant
An ensemble learning framework for long-term flood forecasting
长期洪水预报的集成学习框架
- 批准号:
516105-2017 - 财政年份:2017
- 资助金额:
$ 32.37万 - 项目类别:
Engage Grants Program
Development of Irradiance Forecasting Method based on Ensemble Learning in consideration of Satellite Image Information
考虑卫星图像信息的基于集成学习的辐照度预报方法的发展
- 批准号:
16K06217 - 财政年份:2016
- 资助金额:
$ 32.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic forecasting of rice growth condition by synthesizing ensemble meteorological forecast and crop model
综合气象预报和作物模型对水稻生长状况进行概率预报
- 批准号:
16K18775 - 财政年份:2016
- 资助金额:
$ 32.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)