Examining ensemble machine-learning approaches to improve precipitation forecasting
检查集合机器学习方法以改进降水预报
基本信息
- 批准号:568786-2021
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The water cycle on our planet is driven by complex physical processes, and difficult to be modelled accurately for precipitation prediction. The weather models used for this purpose have to make simplifying assumptions based on time and location considerations and thus, they cannot work universally. Typically, multiple models are utilized to mitigate the issue, but the best method to combine them is yet to be found. Machine learning techniques have proven useful to discover the underlying relations between complex functions, exceeding the abilities of traditional statistical methods, and in some cases even humans, provided that adequate data and computing resources are available. Both techniques will be experimented with and compared in-depth. The research team at UW brings twenty years of research and industry collaboration experience in machine learning which includes a recent machine learning research project with Weatherlogics. Our partner provides specialized products and services, by taking traditional weather information and transforming it into industry-specific data. Some key specialized datasets produced include road condition forecasts, hailstorm tracking, agriculture weather, and platforms for governments to manage winter road maintenance operations. These services allow companies and governments to make crucial weather-dependent decisions using the best available data. With ever-growing hardware capabilities and the amounts of data generated, we will examine two prominent machine learning approaches i) neural networks and ii) random forests to develop an ensemble weather forecast model for predicting precipitation. The research outcome of this project will lead to more accurate precipitation forecasts, which are used to assist the partner's client to improve decision-making. Example of improved decisions include better agricultural decisions, better predictions of snow or ice in road forecasts, and more timely alerts of heavy precipitation events. All of these use cases benefit Canadians, both from a public safety and economic point of view.
我们星球上的水循环是由复杂的物理过程驱动的,很难为降水预测建立准确的模型。用于这一目的的天气模型必须根据时间和地点的考虑做出简化的假设,因此它们不能普遍适用。通常情况下,会使用多个模型来缓解该问题,但尚未找到将它们结合在一起的最佳方法。事实证明,机器学习技术在发现复杂函数之间的潜在关系方面很有用,超出了传统统计方法的能力,在某些情况下甚至是人类,前提是有足够的数据和计算资源可用。这两种技术都将进行深入的试验和比较。威斯康星大学的研究团队在机器学习方面拥有20年的研究和行业合作经验,其中包括最近与WeatherLogic合作的一个机器学习研究项目。我们的合作伙伴通过获取传统天气信息并将其转换为特定行业的数据,提供专业的产品和服务。产生的一些关键的专业数据集包括路况预报、冰雹跟踪、农业天气和政府管理冬季道路维护业务的平台。这些服务允许公司和政府使用可用的最佳数据做出关键的天气决定。随着硬件能力和产生的数据量的不断增长,我们将研究两种主要的机器学习方法:i)神经网络和ii)随机森林,以开发用于预测降水的集成天气预报模型。该项目的研究成果将导致更准确的降水预报,用于帮助合作伙伴的客户改进决策。改进决策的例子包括更好的农业决策,在道路预报中更好地预报雪或冰,以及更及时地对强降水事件发出警报。从公共安全和经济角度来看,所有这些用例都使加拿大人受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramanna, Sheela其他文献
Cognitive Informatics and Computational Intelligence: Theory and Applications Preface
认知信息学和计算智能:理论与应用序言
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0.8
- 作者:
Cui, Zhihua;Ramanna, Sheela;Peters, James F.;Pal, Sankar K. - 通讯作者:
Pal, Sankar K.
1-Dimensional Polynomial Neural Networks for audio signal related problems
- DOI:
10.1016/j.knosys.2022.108174 - 发表时间:
2022-01-29 - 期刊:
- 影响因子:8.8
- 作者:
Henry, Christopher J.;Ramanna, Sheela;Abdallah, Habib Ben - 通讯作者:
Abdallah, Habib Ben
Fully automated 2D and 3D convolutional neural networks pipeline for video segmentation and myocardial infarction detection in echocardiography
- DOI:
10.1007/s11042-021-11579-4 - 发表时间:
2022-07-12 - 期刊:
- 影响因子:3.6
- 作者:
Hamila, Oumaima;Ramanna, Sheela;Hamid, Tahir - 通讯作者:
Hamid, Tahir
Using machine learning to improve neutron identification in water Cherenkov detectors.
- DOI:
10.3389/fdata.2022.978857 - 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
Jamieson, Blair;Stubbs, Matt;Ramanna, Sheela;Walker, John;Prouse, Nick;Akutsu, Ryosuke;de Perio, Patrick;Fedorko, Wojciech - 通讯作者:
Fedorko, Wojciech
Rough-set based learning: Assessing patterns and predictability of anxiety, depression, and sleep scores associated with the use of cannabinoid-based medicine during COVID-19.
- DOI:
10.3389/frai.2023.981953 - 发表时间:
2023 - 期刊:
- 影响因子:4
- 作者:
Ramanna, Sheela;Ashrafi, Negin;Loster, Evan;Debroni, Karen;Turner, Shelley - 通讯作者:
Turner, Shelley
Ramanna, Sheela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramanna, Sheela', 18)}}的其他基金
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
- 批准号:
RGPIN-2019-04104 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Tolerance Methods in Learning: Foundations and Applications
学习中的宽容方法:基础与应用
- 批准号:
DDG-2017-00010 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Development Grant
Classification of road conditions from images with deep learning frameworks********
使用深度学习框架对图像中的路况进行分类********
- 批准号:
537911-2018 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Engage Grants Program
Tolerance Methods in Learning: Foundations and Applications
学习中的宽容方法:基础与应用
- 批准号:
DDG-2017-00010 - 财政年份:2017
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Development Grant
Discovery of Patterns in Associated Sets: Foundations and Applications
关联集中模式的发现:基础和应用
- 批准号:
194376-2012 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Content aggregation and content user modelling in domain specific social networks
特定领域社交网络中的内容聚合和内容用户建模
- 批准号:
492110-2015 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Engage Grants Program
Discovery of Patterns in Associated Sets: Foundations and Applications
关联集中模式的发现:基础和应用
- 批准号:
194376-2012 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
- 批准号:41775087
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
- 批准号:
23K04678 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decoding ensemble dynamics from cortico-amygdalar circuits during social choice
在社会选择过程中从皮质-杏仁核回路解码整体动态
- 批准号:
10723932 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
An ensemble framework for regulatory variant prediction.
用于调控变异预测的集成框架。
- 批准号:
10584999 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Improving flexibility and performance of the Acute Care Enhanced Surveillance (ACES) System for public health surveillance: an ensemble of state-of-the-art machine learning and rule-based natural language processing methods
提高用于公共卫生监测的急性护理增强监测 (ACES) 系统的灵活性和性能:最先进的机器学习和基于规则的自然语言处理方法的集合
- 批准号:
468864 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Operating Grants
Statistical machine learning tools for understanding neural ensemble representations and dynamics
用于理解神经集成表示和动态的统计机器学习工具
- 批准号:
10510107 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Machine Learning methods for Econometric analysis
用于计量经济分析的机器学习方法
- 批准号:
22H00833 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10188196 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Mapping neural ensemble computations to biological circuitry in motor control and decision making - Resubmission - 1
将神经集成计算映射到运动控制和决策中的生物电路 - 重新提交 - 1
- 批准号:
10459591 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10615697 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Mapping neural ensemble computations to biological circuitry in motor control and decision making - Resubmission - 1
将神经集成计算映射到运动控制和决策中的生物电路 - 重新提交 - 1
- 批准号:
10297601 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别: