Investigations on the conjectures of McKay and Alperin-McKay
对麦凯和阿尔珀林-麦凯猜想的考察
基本信息
- 批准号:122759142
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research project is located in the representation theory of finite groups. Our aim is the investigation of two prominent and long standing open conjectures, the McKay conjecture and its refinement by Alperin, the Alperin-McKay conjecture, respectively. These conjectures were formulated in the mid 70th of the last century. In its original formulation, the McKay conjecture postulates that two seemingly unrelated sets of objects, constructed from the representation theory of a group, have the same number of elements. One of these sets is defined by “local data”, i.e. by data constructed from proper subgroups, the other set only by “global data” of the group itself. That global data should be determined by local data, is the philosophy behind the McKay conjecture and other famous conjectures of representation theory. Two recent developments have inspired the proposed project. Firstly, in 2007, Isaacs, Malle and Navarro published a powerful reduction theorem for the McKay conjecture. This leaves one to verify some rather complicated conditions for the finite simple groups. Secondly, the results of Späth’s 2007 PhD thesis provide a means to verify these complicated conditions in the local situation, at least in special cases.
拟议的研究项目位于有限群的表示理论。我们的目的是调查两个突出的和长期存在的开放的命题,麦凯猜想和Alperin的改进,Alperin-McKay猜想,分别。这些理论是在上个世纪70年代中期形成的。在其最初的表述中,麦凯猜想假设从群的表示论构造的两个看似不相关的对象集合具有相同数量的元素。其中一组由“局部数据”定义,即由适当的子组构造的数据定义,另一组仅由组本身的“全局数据”定义。全局数据应该由局部数据决定,这是McKay猜想和其他著名的表示理论背后的哲学。最近的两个发展激发了拟议的项目。首先,在2007年,Isaacs,Malle和Navarro发表了McKay猜想的一个强大的约化定理。这就留下了一个验证有限单群的一些相当复杂的条件。其次,Späth的2007年博士论文的结果提供了一种手段来验证这些复杂的条件在当地的情况下,至少在特殊情况下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gunter Malle, since 6/2012其他文献
Professor Dr. Gunter Malle, since 6/2012的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
LEAP-MPS: Two Conjectures in Mathematical Relativity
LEAP-MPS:数学相对论中的两个猜想
- 批准号:
2316965 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The refined Arthur--Langlands conjectures beyond the supercuspidal case
超越超尖角情况的精致亚瑟-朗兰兹猜想
- 批准号:
2301507 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Combinatorical properties of special symmetic polynomials: results and conjectures
特殊对称多项式的组合性质:结果和猜想
- 批准号:
575062-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
- 批准号:
559668-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
- 批准号:
DGECR-2022-00432 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Main Conjectures for Families of Automorphic Forms
自守形式族的主要猜想
- 批准号:
RGPIN-2018-04392 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
- 批准号:
RGPIN-2022-03093 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Main Conjectures for Families of Automorphic Forms
自守形式族的主要猜想
- 批准号:
RGPIN-2018-04392 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Selmer groups, arithmetic statistics, and parity conjectures.
Selmer 群、算术统计和宇称猜想。
- 批准号:
EP/V006541/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Fellowship
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
- 批准号:
559668-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral