Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory

色对称函数:使用图论解决代数猜想

基本信息

  • 批准号:
    RGPIN-2022-03093
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Many processes depend largely on the innate symmetries of natural objects, and how the movement of these objects in space affects them; for example, determining the energy states of a subatomic particle and predicting transitions between them, or distinguishing communication signals from random noise. One way to study such objects is to perturb them by rotations and analyze the resulting interactions. Because of symmetry, some rotations will produce an identical result to others. These symmetries may be encoded by symmetric functions, multivariate polynomials that are fixed under any permutation of the variables. The study of different objects can then be represented by considering symmetric functions within the context of a given algebraic structure or theory. As examples, for subatomic particles and quantum physics we consider the Fock space, and for signal identification we consider random matrix theory. The long-term goal of this research is to study symmetric functions through the theory of graphs. Graphs arise frequently in research to model discrete systems and their relationships. Graph theory is one of the most studied areas of discrete mathematics, and the main approach to this research will be to interpret symmetric functions in terms of graphs and their structure to apply a much broader range of knowledge. A starting point will be the chromatic symmetric function X_G, currently the only major connection between graphs and symmetric functions. This program will expand our knowledge helping us to understand the information X_G encodes about graphs, and to generalize X_G to a stronger form based on K-theory and other ideas from modern algebra. Additionally, this program will create graph-based constructions to represent algebraic objects such as LLT polynomials and plethysms of Schur functions, thus providing new avenues of attack for notoriously difficult problems in algebraic combinatorics such as interpreting Macdonald polynomials, and determining branching rules for representations of symmetric groups. The long-term vision of this research anticipates that these two paths will converge and build upon each other: chromatic symmetric functions are already related in special cases to LLT polynomials, which in turn are used in general symmetric function theory to study the movement of particles between quantum states in quantum mechanics. Thus, this research aims to form a bridge connecting two well-studied areas of mathematics by building from both sides. Such a bridge will greatly advance results and approaches in both fields, as techniques from one may be easily applied to the other. Students taking part in this program will learn valuable skills at the forefront of two major areas of discrete mathematics with immediate applications to positions in academia or the computer science industry.
许多过程在很大程度上取决于自然物体的固有对称性,以及这些物体在空间中的运动如何影响它们;例如,确定亚原子粒子的能量状态并预测它们之间的跃迁,或者区分通信信号和随机噪声。研究这种物体的一种方法是通过旋转来扰动它们,并分析由此产生的相互作用。由于对称性,某些旋转将产生与其他旋转相同的结果。这些对称性可以通过对称函数、在变量的任何排列下固定的多元多项式来编码。不同对象的研究可以通过在给定的代数结构或理论的背景下考虑对称函数来表示。作为例子,对于亚原子粒子和量子物理,我们考虑Fock空间,对于信号识别,我们考虑随机矩阵理论。这项研究的长期目标是通过图论来研究对称函数。在研究中经常出现图来建模离散系统及其关系。图论是离散数学中研究最多的领域之一,这项研究的主要方法是根据图及其结构来解释对称函数,以应用更广泛的知识。一个起点将是色对称函数X_G,目前唯一的主要联系图和对称函数。这个程序将扩展我们的知识,帮助我们理解X_G编码的关于图的信息,并将X_G推广到基于K-理论和现代代数的其他思想的更强的形式。此外,该程序将创建基于图形的结构来表示代数对象,例如LLT多项式和Schur函数的体积,从而为代数组合学中众所周知的困难问题提供新的攻击途径,例如解释Macdonald多项式,并确定对称群表示的分支规则。这项研究的长期愿景预计这两条路径将相互融合和建立:色对称函数在特殊情况下已经与LLT多项式相关,而LLT多项式又用于一般对称函数理论,以研究量子力学中量子态之间的粒子运动。因此,本研究的目的是从两个方面建立一个桥梁,连接两个数学研究领域。这种桥梁将极大地推进这两个领域的成果和方法,因为一个领域的技术可以很容易地应用于另一个领域。参加该计划的学生将在离散数学的两个主要领域的前沿学习宝贵的技能,并立即应用于学术界或计算机科学行业的职位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Crew, Logan其他文献

Disproportionate division
不成比例的划分
A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function
顶点加权Tutte对称函数以及用等色对称函数构造图
  • DOI:
    10.37236/10018
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aliste-Prieto, José;Crew, Logan;Spirkl, Sophie;Zamora, José
  • 通讯作者:
    Zamora, José
A Complete Multipartite Basis for the Chromatic Symmetric Function
色对称函数的完整多部分基础

Crew, Logan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Crew, Logan', 18)}}的其他基金

Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    DGECR-2022-00432
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
  • 批准号:
    2237057
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053728/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Research Grant
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    DGECR-2022-00432
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement
Random Systems from Symmetric Functions and Vertex Models
对称函数和顶点模型的随机系统
  • 批准号:
    2153869
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Symmetric Functions: Combinatorial Identities and Bijections
对称函数:组合恒等式和双射
  • 批准号:
    RGPIN-2020-04020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Expansions of the Chromatic and Tutte Symmetric Functions
半音对称函数和图特对称函数的扩展
  • 批准号:
    562679-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    University Undergraduate Student Research Awards
Symmetric Functions: Combinatorial Identities and Bijections
对称函数:组合恒等式和双射
  • 批准号:
    RGPIN-2020-04020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and combinatorial study on multiple zeta functions from the viewpoint of symmetric functions
从对称函数的角度对多个zeta函数进行算术和组合研究
  • 批准号:
    21K03206
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on symmetric functions and enumerative geometry by quantum algebras and integrable models
用量子代数和可积模型研究对称函数和计数几何
  • 批准号:
    21K03176
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了