Semibounded unitary representations of infinite dimensional Lie groups
无限维李群的半有界酉表示
基本信息
- 批准号:122817625
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infinite dimensional Lie groups and their representations show up in all areas of mathematics and other sciences, wherever symmetries depending on infinitely many parameters arise. The goal of this project is to develop a geometric approach to the important class of semibounded unitary representations of infinite dimensional Lie groups. Typical groups arising in this context are double extensions of Hilbert Lie groups, which include oscillator groups in the abelian case, afine Kac Moody groups based on loop groups with infinite dimensional targets and a large number of groups whose Lie algebras are Z-graded. Semiboundedness of a unitary representation is a stable version of the „positive energy" condition which characterizes many representations arising in mathematical physics, resp., field theories. For a unitary representation of a Lie group it means that the selfadjoint operators from the derived representation are uniformly bounded below on some open subset of the Lie algebra. Our goal is to understand the decomposition theory and the irreducible representations in this class.The focus of the present project lies on combining algebraic, geometric and analytic aspects of the theory, such as realizations in holomorphic bundles and convexity properties of momentum maps related to spectral properties of operators to obtain classification results.
无限维李群及其表示出现在数学和其他科学的所有领域,只要存在依赖无限多个参数的对称性。本计画的目标是发展一种几何方法来处理无限维李群的半有界酉表示的重要类别。在这种情况下产生的典型群是Hilbert Lie群的双重扩展,其中包括在阿贝尔情况下的振子群,基于无限维目标环群的优良Kac Moody群,以及大量李代数为z级的群。酉表示的半有界性是“正能量”条件的稳定版本,它表征了数学物理中出现的许多表示,如:,场论。对于李群的酉表示,它意味着该表示的自伴随算子在李代数的某个开子集上是一致有界的。我们的目标是在这门课上理解分解理论和不可约表示。本项目的重点在于结合理论的代数、几何和解析方面,如全纯束的实现和与算子谱性质相关的动量映射的凹凸性,从而获得分类结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Karl-Hermann Neeb其他文献
Professor Dr. Karl-Hermann Neeb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Karl-Hermann Neeb', 18)}}的其他基金
Invariant convexity in infinite dimensional Lie algebras
无限维李代数中的不变凸性
- 批准号:
320351428 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Geometric representation theory of roof graded Lie groups
屋顶分级李群的几何表示理论
- 批准号:
5369570 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Nets of standard subspaces on causal symmetric spaces
因果对称空间上的标准子空间网
- 批准号:
423506586 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
- 批准号:
EP/V046713/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of new wavelets from unitary circuit representations
从酉电路表示中开发新的小波
- 批准号:
505898-2016 - 财政年份:2016
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1620329 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Quantization of singular nilpotent orbits of reductive Lie groups and realization of unitary representations
还原李群奇异幂零轨道的量子化和酉表示的实现
- 批准号:
25400103 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




