Contaminant Particle Formation in Radio Frequency Silane Plasmas
射频硅烷等离子体中污染物颗粒的形成
基本信息
- 批准号:9731568
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9731568KortshagenThe formation of ultrafine particles in processing plasmas has been a concern for some years. Contaminant particles can cause considerable product yield loss in microelectronics fabrication or they can severely impair the quality of thin films used for the production of photovoltaic cells or the coating of optical devices.While considerable progress has been made in the understanding of the transport and charging of micrometer-sized particles in plasmas, little is known about the nucleation of particles and the behavior of nanometer-sized particles. The nucleation and growth of small particles is observed in particular in plasma enhanced chemical vapor deposition systems. The particle formation in silane plasmas, which are of great importance for the deposition of amorphous silicon, has been extensively studied, however, the true nature of the particle formation mechanism has not been determined. Different and even contradicting scenarios for particle formation in silane plasmas have been proposed by various researchers. For instance, the important precursor for the particle nucleation in silane plasmas is still controversially discussed. The influence of the plasma conditions on the nucleation process are not understood. Also, experimental results on the particle nucleation phase are scarce, due to the serious difficulties in in-situ detection of nanometer-sized particles.Since the understanding of particle nucleation is a very complex problem, a combined experimental and theoretical approach will be pursued in the proposed project. The proposed research has three main objectives: 1. A nucleation model for particles in silane plasmas will be developed which takes into account the chemical aspects involved. 2. The nucleation model will be coupled to a self-consistent plasma model for a silane plasma chemical vapor deposition system in order to enable predictions about the occurrence of particle nucleation. 3. The model to be developed will be verified by a number of experimental studies on a capacitively coupled RF discharge in diluted silane.The nucleation model to be developed will consider the formation of hydrogenated silicon clusters by both anionic and neutral mechanisms. It will be coupled to an aerosol model capable of predicting particle growth, coagulation and transport. This model will be combined with a kinetic discharge model for a capacitive RF discharge. The kinetic discharge model, which will be based on already existing codes, will be used to calculate the spatial profile of the important species involved in the nucleation process. Since the nucleation rate depends sensitively on the precursor concentrations it is expected that predictions about nucleation thresholds and the spatial location of nucleation regions can be obtained. Unlike in some other approaches, the effects of a non- Maxwellian electron distribution function, which are crucial for an accurate determination of various chemical reaction rates, will be taken into account by calculating the actual distribution function by solution of the Boltzmann equation.The experimental studies will focus on the detection of small particles in order to verify the nucleation model and on the measurement of the electron distribution function using Langmuir probes in order to test the kinetic discharge model. For the particle detection a high power YAG laser will be used for evaporative particle explosion and electron detachment. Furthermore, a new diagnostics will be tested which is based on the propagation of acoustic waves coupled to the particle population in the plasma. This diagnostic should be able to reveal in-situ information about the particle size and mass even for subnanometer particles, which are extremely difficult to detect with laser methods.
9731568Kortshagen 多年来,等离子体处理过程中超细颗粒的形成一直是人们关注的问题。 污染物颗粒会在微电子制造中造成相当大的产品产量损失,或者会严重损害用于生产光伏电池或光学器件涂层的薄膜的质量。虽然在了解等离子体中微米级颗粒的传输和充电方面已经取得了相当大的进展,但人们对颗粒的成核和纳米级颗粒的行为知之甚少。 特别是在等离子体增强化学气相沉积系统中观察到小颗粒的成核和生长。 硅烷等离子体中的颗粒形成对于非晶硅的沉积非常重要,已被广泛研究,然而,颗粒形成机制的真实性质尚未确定。 不同的研究人员提出了硅烷等离子体中粒子形成的不同甚至相互矛盾的方案。 例如,硅烷等离子体中颗粒成核的重要前体仍然存在争议。 等离子体条件对成核过程的影响尚不清楚。 此外,由于纳米尺寸颗粒的原位检测存在严重困难,颗粒成核相的实验结果很少。由于颗粒成核的理解是一个非常复杂的问题,因此本项目将采用实验和理论相结合的方法。 拟议的研究有三个主要目标: 1. 将开发硅烷等离子体中粒子的成核模型,该模型考虑到所涉及的化学方面。 2. 成核模型将与硅烷等离子体化学气相沉积系统的自洽等离子体模型耦合,以便能够预测粒子成核的发生。 3. 待开发的模型将通过对稀释硅烷中电容耦合射频放电的大量实验研究进行验证。待开发的成核模型将考虑通过阴离子和中性机制形成氢化硅簇。 它将与能够预测颗粒生长、凝结和运输的气溶胶模型相结合。 该模型将与电容式射频放电的动力学放电模型相结合。 动力学放电模型将基于现有的代码,用于计算成核过程中涉及的重要物质的空间分布。 由于成核速率敏感地取决于前体浓度,因此期望可以获得关于成核阈值和成核区域的空间位置的预测。 与其他方法不同,非麦克斯韦电子分布函数的影响对于准确确定各种化学反应速率至关重要,将通过求解玻尔兹曼方程计算实际分布函数来考虑。实验研究将集中于检测小颗粒以验证成核模型,并使用朗缪尔探针测量电子分布函数以测试动力学放电 模型。 对于粒子检测,将使用高功率 YAG 激光器进行蒸发粒子爆炸和电子分离。 此外,还将测试一种新的诊断方法,该方法基于与等离子体中的粒子群耦合的声波的传播。 这种诊断应该能够揭示有关颗粒尺寸和质量的原位信息,甚至是亚纳米颗粒的信息,而激光方法极难检测到这些颗粒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uwe Kortshagen其他文献
大気圧非平衡プラズマのミクロ構造を利用した垂直配向単層カーボンナノチューブの合成
利用大气非平衡等离子体微观结构合成垂直排列单壁碳纳米管
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
大西空摩;野崎智洋;岡崎健;Joachim Heberlein;Uwe Kortshagen - 通讯作者:
Uwe Kortshagen
大気圧非平衡プラズマの構造と物質変換への応用
大气压非平衡等离子体的结构及其在材料转化中的应用
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
野崎智洋;岡崎健;Joachim Heberlein;Uwe Kortshagen - 通讯作者:
Uwe Kortshagen
Confined yet free to go
受限却能自由前往
- DOI:
10.1038/s41563-019-0595-x - 发表时间:
2020-01-27 - 期刊:
- 影响因子:38.500
- 作者:
Uwe Kortshagen - 通讯作者:
Uwe Kortshagen
Uwe Kortshagen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uwe Kortshagen', 18)}}的其他基金
GRC/GRS: Nanomaterials for Applications in Energy Technology: Energy Conversion, Storage, and Transport
GRC/GRS:纳米材料在能源技术中的应用:能源转换、存储和运输
- 批准号:
1502461 - 财政年份:2015
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Collaborative Research: Recovery of Waste Heat using Efficient Thermoelectric Devices Based on Laser Sintering of Doped SiGe Nanoparticles
合作研究:利用基于掺杂硅锗纳米粒子激光烧结的高效热电装置回收废热
- 批准号:
1407903 - 财政年份:2014
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Conference: 2010 Gordon Research Conference and Gordon Kenan Research Seminar on Plasma Processing Science: July 11-16, 2010 in New London, NH
会议:2010 年戈登研究会议和戈登凯南等离子体处理科学研究研讨会:2010 年 7 月 11 日至 16 日在新罕布什尔州新伦敦举行
- 批准号:
1019137 - 财政年份:2010
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Charging and Heating Dynamics of Nanoparticles in Nonthermal Plasmas
非热等离子体中纳米颗粒的充电和加热动力学
- 批准号:
0903842 - 财政年份:2009
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Student and Participant Support for the 2008 Gordon Research Conference on Plasma Processing Science (GRC-PPS-2008)
2008 年戈登等离子体加工科学研究会议 (GRC-PPS-2008) 的学生和参与者支持
- 批准号:
0821077 - 财政年份:2008
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Solar Cells from Silicon and Germanium Nanocrystals Inks
硅和锗纳米晶体墨水太阳能电池
- 批准号:
0756326 - 财政年份:2008
- 资助金额:
$ 16.91万 - 项目类别:
Continuing Grant
Scaleable High-Yield Plasma Production of Functionalized Semiconductor Nanocrystals
功能化半导体纳米晶体的可规模化高产率等离子体生产
- 批准号:
0556163 - 财政年份:2006
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Nanocrystal Formation and Morphology in Nonthermal Plasmas
合作研究:GOALI:非热等离子体中纳米晶体的形成和形态
- 批准号:
0500332 - 财政年份:2005
- 资助金额:
$ 16.91万 - 项目类别:
Continuing Grant
Student Support for the 2002 Gaseous Electronics Conference
学生对 2002 年气体电子会议的支持
- 批准号:
0229123 - 财政年份:2002
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
IGERT: Nanoparticle Science and Engineering
IGERT:纳米粒子科学与工程
- 批准号:
0114372 - 财政年份:2001
- 资助金额:
$ 16.91万 - 项目类别:
Continuing Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
A sharp-interface multi-physics particle method to elucidate porosity formation and elimination mechanisms in metal additive manufacturing
一种锐界面多物理粒子方法,用于阐明金属增材制造中孔隙的形成和消除机制
- 批准号:
23K16892 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ab-initio analysis on auroral structure formation, dynamics, and particle acceleration
极光结构形成、动力学和粒子加速的从头算分析
- 批准号:
22H00116 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Interactions between Organic Oxidation and Acid-base Chemistry during Particle Formation and Growth
颗粒形成和生长过程中有机氧化和酸碱化学之间的相互作用
- 批准号:
2132089 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
New Particle Formation in the Marine Boundary Layer: The Frequency, Mechanism, and Impact on Cloud Condensation Nuclei
海洋边界层新粒子的形成:频率、机制及其对云凝结核的影响
- 批准号:
2147747 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Atmospheric Particle Formation in Two Systems: Sulfuric Acid (H2SO4)/Water (H2O) plus Ammonia (NH3) and/or Amines, and Oxidation Products from Organic Compounds
两个系统中大气颗粒的形成:硫酸 (H2SO4)/水 (H2O) 加氨 (NH3) 和/或胺,以及有机化合物的氧化产物
- 批准号:
2232189 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Collaborative Studies on Soot Particle Formation and Characterization
烟灰颗粒形成和表征的合作研究
- 批准号:
572808-2022 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Alliance Grants
Study on particle formation mechanisms of biogenic polyamines in a subtropical zone of Japan
日本亚热带生物多胺颗粒形成机制研究
- 批准号:
22K21330 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Molecular Level Understanding of New Particle Formation in the Urban Atmosphere: Contribution of Local Pollutants
城市大气中新颗粒形成的分子水平理解:当地污染物的贡献
- 批准号:
NE/V001523/1 - 财政年份:2021
- 资助金额:
$ 16.91万 - 项目类别:
Research Grant
Ultrafine Inorganic Particle Formation in Plasma-Assisted Combustion
等离子体辅助燃烧中超细无机颗粒的形成
- 批准号:
2132655 - 财政年份:2021
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
Suppression of New Particle Formation by Isoprene in Non-Pristine Mixed Forest Environments
非原始混合森林环境中异戊二烯对新颗粒形成的抑制
- 批准号:
2107916 - 财政年份:2021
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant