RUI: Deduction in Classical and Multiple-Valued Logics

RUI:经典和多值逻辑的演绎

基本信息

  • 批准号:
    9731893
  • 负责人:
  • 金额:
    $ 9.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

This project examines several areas of research related to theorem proving techniques for multiple-valued logics (MVL's) and for proving completeness: - The most important work may be a new rule of inference, a resolution-like rule tentatively named Modification, for regular MVL's. It appears likely that Modification is more effective than existing methods of inference for MVL's; it is also likely that the insights provided by Modification can be adapted to improve the search behavior of other MVL inference rules. - Signed logic is an adaptation of classical logic for reasoning about MVL's. Several modest implementations have been developed recently for signed logic. The current project will broaden the focus to implementations in the general theorem proving setting. Experiments with logic programming and constraint solving will also be undertaken. - Annotated logic corresponds to a naturally arising class of signed logic and has been applied to reasoning with inconsistency. Current systems of annotated logic are paraconsistent, that is, inconsistency tolerant, with respect to epistemic inconsistency, but they behave classically with respect to ontological inconsistency. A mapping from signed logic to annotated logic has been defined which has the effect of mapping ontological inconsistency to epistemic inconsistency. Further investigation into properties of this mapping in the proposed project is expected to lead to fruitful insights on the relationships between the two notions of inconsistencies. - The Anderson-Bledsoe excess literal proof of the completeness of resolution was recently generalized to provide simplified proofs of known results as well as to prove completeness of connected tableaux and of connected regular tableaux for NNF formulas and the completeness of linear non-clausal resolution. The project will examine the application of the technique to still other methods of proof procedures.
这个项目研究了与多值逻辑的定理证明技术和证明完备性有关的几个领域:-最重要的工作可能是一种新的推理规则,一种类似解析的规则,暂定为规则MVL的修改。对于MVL的推理,修改似乎比现有的推理方法更有效;也可能修改提供的见解可以改进其他MVL推理规则的搜索行为。-符号逻辑是对经典逻辑的改编,用于关于MVL的推理。最近已经为符号逻辑开发了几个简单的实现。当前的项目将把重点扩大到在一般定理证明环境中的实现。还将进行逻辑编程和约束求解的实验。-注解逻辑对应于一类自然产生的符号逻辑,并已被应用于不一致推理。当前的注释逻辑系统对于认知不一致是次协调的,也就是不一致容忍的,但它们在本体不一致方面表现出经典的行为。定义了符号逻辑到注释逻辑的映射,具有将本体论不一致映射到认知不一致的效果。对拟议项目中这一映射的性质进行进一步调查,可望对这两个不一致概念之间的关系产生富有成效的见解。-最近推广了Anderson-Bledsoe关于归结完备性的文字证明,以提供已知结果的简化证明,并证明了NNF公式的连通表和连通正则表的完备性以及线性非子句归结的完备性。该项目将审查该技术在其他证明程序方法中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Lu其他文献

Inverse Eigenvalue Problems for Exploring the Dynamics of Systems Biology Models
用于探索系统生物学模型动力学的反特征值问题
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Lu
  • 通讯作者:
    James Lu
Rational design of robust biomolecular circuits: from specification to parameters
稳健生物分子电路的合理设计:从规格到参数
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hafner;Tatjana Petrov;James Lu;H. Koeppl
  • 通讯作者:
    H. Koeppl
An integrated map of genetic variation from 1 , 092 human genomes Citation
1 , 092 个人类基因组遗传变异的综合图谱 引文
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Eberle;Miriam K. Konkel;Jerilyn A. Walker;Jake J. Michaelson;Kenny Ye;A. Maroo;Luke J. Tallon;M. McLellan;J. Wallis;Sarah J. Lindsay;Klaudia Walter;Yujun Zhang;U. S. Evani;C. Kovar;L. Lewis;James Lu;D. Muzny;U. Nagaswamy;A. Sabo;Thomas M. Keane;Shane A. McCarthy;Laura Clarke;Fiona Cunningham;Javier Herrero;Walker Hale;D. Kalra;Dimitriy Beloslyudtsev;Nathan Bouk;Robert Cohen;Charles Cook;John Garner;T. Hefferon;M. Kimelman;Chunlei Liu;John Lopez;Peter A. Meric;Chris O’Sullivan;Yu. G. Ostapchuk;Sergiy Ponomarov;Valerie A Schneider;Eugene M. Shekhtman;Karl Sirotkin;D. Slotta;Chunlin Xiao;Kathleen C. Barnes;Christine Beiswanger;Richard Durbin;N. Gharani;Richard A. Gibbs;Christopher R. Gignoux;S. Gravel;B. Henn;Danielle Jones;L. Jorde;Jane S. Kaye;Alastair Kent;A. Kerasidou;Gil A. McVean;Michael Parker;David Reich;Karla Sandoval;R. Sudbrak;Sarah Tishkoff;L. H. Toji;A. Felsenfeld;J. Mcewen;Nicholas C. Clemm;A. Duncanson;A. Auton;L. Brooks;M. DePristo;R. Handsaker
  • 通讯作者:
    R. Handsaker
SBML ODE SOLVER LIBRARY: EXTENSIONS FOR INVERSE ANALYSIS
SBML ODE 求解器库:逆分析的扩展
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Lu;S. M¨uller;Rainer Machn´e;Christoph Flamm
  • 通讯作者:
    Christoph Flamm
Inverse Bifurcation Analysis of a Model for the Mammalian G 1/ S Regulatory Module
哺乳动物 G 1/ S 调节模块模型的逆分岔分析
  • DOI:
    10.1007/978-3-540-71233-6_14
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Lu;H. Engl;Rainer Machné;P. Schuster
  • 通讯作者:
    P. Schuster

James Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Lu', 18)}}的其他基金

RUI: Deduction in Classical and Multiple-Valued Logics
RUI:经典和多值逻辑的演绎
  • 批准号:
    0233189
  • 财政年份:
    2002
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
RUI: A Framework for Automated Deduction Systems in MultipleValued Annotated Logics
RUI:多值注释逻辑中的自动演绎系统框架
  • 批准号:
    9225037
  • 财政年份:
    1993
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant

相似海外基金

Automated Deduction and Reduction Orders
自动扣除和减少订单
  • 批准号:
    22K11900
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deduction by Analogy Completion
类比演绎完成
  • 批准号:
    72200
  • 财政年份:
    2020
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Feasibility Studies
ThoughtRiver - Deduction By Analogy (DBA)
ThoughtRiver - 类比演绎 (DBA)
  • 批准号:
    105001
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Feasibility Studies
Behavioral and Experimental Economics Research on the Tax Deduction for Charitable Giving in Japan
日本慈善捐赠税收减免的行为和实验经济学研究
  • 批准号:
    19K13722
  • 财政年份:
    2019
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Enhancers and the Convergent Evolution of Limb Deduction in Squamates
合作研究:有鳞动物肢体扣除的增强子和趋同进化
  • 批准号:
    1754950
  • 财政年份:
    2018
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhancers and the Convergent Evolution of Limb Deduction in Squamates
合作研究:有鳞动物肢体扣除的增强子和趋同进化
  • 批准号:
    1754417
  • 财政年份:
    2018
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Next-generation kinship deduction for forensic and genealogical analysis
用于法医和家谱分析的下一代亲属关系推论
  • 批准号:
    1940004
  • 财政年份:
    2017
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Studentship
Inquiring the way of deduction of risk relating alarm in operating rooms and development of new monitoring system
手术室报警风险扣除方式探讨及新型监控系统开发
  • 批准号:
    16K15396
  • 财政年份:
    2016
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Accurate measurement of Zeeman effect of methanol for deduction of interstellar magnetic field
精确测量甲醇塞曼效应推演星际磁场
  • 批准号:
    16K05293
  • 财政年份:
    2016
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Practical Automated Deduction
实用自动扣除
  • 批准号:
    DP140104245
  • 财政年份:
    2014
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了