Topics in Classical and Quantum Relativity

经典和量子相对论主题

基本信息

  • 批准号:
    9732636
  • 负责人:
  • 金额:
    $ 5.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-15 至 2001-05-31
  • 项目状态:
    已结题

项目摘要

***9732636TorreThis project investigates a number of issues and problems in classical and quantum relativity and, in particular, Einstein's theory of gravitation. The following topics are addressed: Construction of a general theory of symmetry reduction in relativistic field theories. Investigation of the status of unitary dynamical evolution of quantum fields along arbitrary foliations of a fixed spacetime. Completion of a general theory of local cohomology (p-form conservation laws) which is tailored to relativistic field theory, including development of computational tools and detailed applications to the Einstein equations. Investigation of the status of curvature scalars as privileged canonical variables representing "many-fingered time" in the Hamiltonian formulation of general relativity. Further development and applications of a new approach to asymptotic conversation laws in gravitational field theory. Further development and applications of a parametrization of the jet space of vacuum metrics. Rigorous treatment of Dirac constraint quantization of spacetimes admitting two commuting Killing vector fields using the techniques of parametrized field theory. Development of a theory of path integrals in quantum gravity based upon results obtained using Ashtekar variables and canonical quantization.The goal of work on these topics is to improve the state of knowledge regarding general relativity, gravitation, and quantum mechanics as well as the interaction of these branches of physics.***
* 9732636 Torre这个项目研究了经典和量子相对论中的一些问题,特别是爱因斯坦的引力理论。 以下主题是解决:建设的一般理论对称性减少相对论性场论。量子场沿固定时空沿着任意叶理的幺正动力学演化状态的研究。完成针对相对论场论的局部上同调(p-形式守恒定律)的一般理论,包括开发计算工具和爱因斯坦方程的详细应用。曲率标量作为代表“多指时间”的特权正则变量在广义相对论哈密顿公式中的地位的研究。引力场理论中渐近守恒律新方法的进一步发展和应用。真空度规喷流空间参数化的进一步发展和应用。严格处理狄拉克约束量子化的时空,允许两个交换的基灵向量场使用参数化场论的技术。基于使用Ashtekar变量和正则量子化获得的结果,发展量子引力中的路径积分理论。这些主题的工作目标是提高关于广义相对论,引力和量子力学以及这些物理分支之间相互作用的知识水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Torre其他文献

A new non-inheriting homogeneous solution of the Einstein-Maxwell equations with cosmological term
带有宇宙项的爱因斯坦-麦克斯韦方程组的一种新的非继承齐次解
  • DOI:
    10.1007/s10714-022-02913-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ian Anderson;Charles Torre
  • 通讯作者:
    Charles Torre
Newtonian Time from Timeless Dynamics

Charles Torre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Torre', 18)}}的其他基金

Research in Classical and Quantum Gravitation
经典和量子引力研究
  • 批准号:
    0244765
  • 财政年份:
    2003
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Continuing Grant
Research in Classical and Quantum Gravity
经典和量子引力研究
  • 批准号:
    0070867
  • 财政年份:
    2000
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Continuing Grant
Topics in Classical and Quantum Relativity
经典和量子相对论主题
  • 批准号:
    9600616
  • 财政年份:
    1996
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
NATO Postdoctoral Fellow
北约博士后研究员
  • 批准号:
    8550649
  • 财政年份:
    1985
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant

相似海外基金

Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Fellowship
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
  • 批准号:
    MR/Y003845/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Fellowship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
CAREER: From Quantum to Classical and Back: Bringing 2D Spectroscopy Insights into Focus
职业生涯:从量子到经典再回归:聚焦二维光谱学见解
  • 批准号:
    2236625
  • 财政年份:
    2023
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
  • 批准号:
    2301884
  • 财政年份:
    2023
  • 资助金额:
    $ 5.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了