ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
基本信息
- 批准号:2301884
- 负责人:
- 金额:$ 19.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cloud-Edge computing for Cyber-Physical Systems (CPS) and Quantum Computing have evolved independently, each addressing unique challenges and opportunities. Cloud-Edge-CPS research has predominantly focused on using classical resources, with limited exploration of the potential benefits that quantum-equipped devices may offer. This leaves a knowledge gap in understanding how quantum technologies could enhance Cloud-Edge-CPS performance and capabilities. Simultaneously, the quantum computing community has primarily focused on developing high-qubit, stable hardware and refining the underlying technology, with insufficient attention to broadening the application scenarios for low-qubit quantum machines, which are more accessible in the Noisy Intermediate-Scale Quantum (NISQ) era. This project aims to bridge the gap between these research domains by incorporating quantum-equipped devices, such as quantum edge nodes and quantum clouds, into a Cloud-Edge collaborative computing framework. It highlights the potential of low-qubit quantum machines in resource-constrained environments and introduces them to novel usage scenarios. Moreover, it fosters collaboration between various research and development communities, encompassing cloud-edge computing, cyber-physical systems, and quantum computing. The proposed quantum-classical system emphasizes extensibility, creating a supportive environment for researchers and engineers from these communities, ultimately stimulating innovation and cooperation across these disciplines. It will create opportunities for students to develop their quantum literacy at an underrepresented institution.This project will develop a quantum-equipped Cloud-Edge collaborative computing framework to effectively manage heterogeneous participants, network channels, and quantum noise on resource-constrained devices. The proposed framework consists of three primary components: (i) cloud servers located in remote data centers, providing ample quantum and classical resources; (ii) Edge nodes positioned near end devices with fewer resources than clouds, which can be categorized into two types - quantum-classical and classical-only edges; and (iii) End devices that act as system consumers, possessing minimal resources and potentially equipped with quantum processors. Based on the framework, it provides various modules, including end device registration, resource management, task modeling, and offloading estimation, exploring the potential advantages derived from quantum features such as superposition, entanglements, and teleportation. Specifically, the system builds a client profile for each end device. When a computing job arrives, it models a specific task and generates two execution plans, quantum-classical and classical-only. Based on predefined quantum services that have the potential to provide significant benefits to end devices (e.g., quadratic or exponential speedups), the system predicts the task execution time according to the plans and selects the one that satisfies the client's constraints and maximizes overall system performance. Due to the limited access to quantum machines, the project will implement a distributed quantum-classical Cloud-Edge-CPS simulator to conduct large-scale, cloud-based experiments and support a high degree of heterogeneity. Additionally, it will develop a runtime sampler to study quantum noise effects on resource-constrained NISQ machines, detailing how clouds may help manage inherent noise and errors. Ultimately, this project aims to enhance the performance, efficiency, and capabilities of Cloud-Edge collaborative computing systems by incorporating quantum-equipped devices and investigating their potential benefits in various application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
面向网络物理系统(CPS)的云边缘计算和量子计算各自独立发展,各自应对独特的挑战和机遇。云边缘cps研究主要集中在使用经典资源,对量子设备可能提供的潜在好处的探索有限。这在理解量子技术如何增强Cloud-Edge-CPS的性能和能力方面留下了知识空白。同时,量子计算界主要专注于开发高量子位、稳定的硬件和完善底层技术,而对扩大低量子位量子机器的应用场景关注不足,而低量子位量子机器在嘈杂的中等规模量子(NISQ)时代更容易获得。该项目旨在通过将量子设备(如量子边缘节点和量子云)整合到云边缘协作计算框架中,弥合这些研究领域之间的差距。它强调了低量子位量子机在资源受限环境中的潜力,并将它们引入了新的使用场景。此外,它还促进了各种研究和开发社区之间的合作,包括云边缘计算、网络物理系统和量子计算。提出的量子经典系统强调可扩展性,为来自这些社区的研究人员和工程师创造了一个支持性的环境,最终刺激了这些学科之间的创新和合作。它将为学生在代表性不足的机构中培养量子素养创造机会。该项目将开发一个配备量子的云边缘协作计算框架,以有效管理资源受限设备上的异构参与者、网络通道和量子噪声。提议的框架由三个主要部分组成:(i)位于远程数据中心的云服务器,提供充足的量子和经典资源;(ii)边缘节点位于资源比云少的终端设备附近,可分为两种类型-量子经典边缘和纯经典边缘;(iii)作为系统消费者的终端设备,拥有最少的资源并可能配备量子处理器。基于该框架,它提供了各种模块,包括终端设备注册、资源管理、任务建模和卸载估计,探索了叠加、纠缠和隐形传态等量子特征带来的潜在优势。具体来说,系统为每个终端设备构建一个客户端配置文件。当一个计算任务到达时,它会对一个特定的任务进行建模,并生成两个执行计划,量子经典和纯经典。基于预定义的量子服务,这些服务有可能为终端设备提供显著的好处(例如,二次或指数加速),系统根据计划预测任务执行时间,并选择满足客户端的约束并最大化整体系统性能的服务。由于对量子机器的访问有限,该项目将实现分布式量子经典Cloud-Edge-CPS模拟器,以进行大规模,基于云的实验并支持高度异构。此外,它将开发一个运行时采样器来研究资源受限的NISQ机器上的量子噪声影响,详细说明云如何帮助管理固有的噪声和错误。最终,该项目旨在通过整合量子设备并研究其在各种应用场景中的潜在优势,提高云边缘协作计算系统的性能、效率和能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Mao其他文献
ハンチントン病における新規ネクローシスTRIADの分子病態
亨廷顿病中新型坏死 TRIAD 的分子病理学
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
藤田 慶大;Ying Mao;陳 西貴;山西 恵美子;本間 秀典;田川 一彦;岡澤 均 - 通讯作者:
岡澤 均
Refining the Anatomy of Percutaneous Trigeminal Rhizotomy: A Cadaveric, Radiological, and Surgical Study
完善经皮三叉神经根切断术的解剖结构:尸体、放射学和外科研究
- DOI:
10.1227/ons.0000000000000590 - 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Yuanzhi Xu;T. E. El Ahmadieh;M. Nuñez;Qi Zhang;Yaohua Liu;J. Fernandez;A. Cohen;Ying Mao - 通讯作者:
Ying Mao
Reduced Glomerular Epithelial Protein 1 Expression and Podocyte Injury in Immunoglobulin a Nephropathy
免疫球蛋白 a 肾病中肾小球上皮蛋白 1 表达减少和足细胞损伤
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:1.6
- 作者:
Tian;Ping Wang;Ying Mao;Jin;Hua Chen - 通讯作者:
Hua Chen
Application effect of prehospital-hospital integrated emergency nursing in patients with acute cerebral infarction.
院前院内一体化急救护理在急性脑梗死患者中的应用效果
- DOI:
10.1080/02648725.2023.2210954 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yujuan Chen;Ying Mao;Lihui Chen - 通讯作者:
Lihui Chen
Efficiently and Conveniently Heparin/ PEG-PCL Core-shell Microcarriers Fabrication and Optimization via Coaxial-Electrospraying
- DOI:
- 发表时间:
2018-10 - 期刊:
- 影响因子:0
- 作者:
Ying Mao - 通讯作者:
Ying Mao
Ying Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Mao', 18)}}的其他基金
XTRIPODS: Advancing Quantum Data Science Research and Education: Resilient Quantum Learning in NISQ era
XTRIPODS:推进量子数据科学研究和教育:NISQ 时代的弹性量子学习
- 批准号:
2343535 - 财政年份:2024
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Collaborative Optimization and Management for Iterative and Parallel Quantum Computing
ExpandQISE:轨道 1:迭代和并行量子计算的协作优化和管理
- 批准号:
2329020 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
相似海外基金
ExpandQISE: Track 1: Harnessing a scalable platform to demonstrate multipartite quantum effects under strict conditions
ExpandQISE:轨道 1:利用可扩展平台在严格条件下演示多部分量子效应
- 批准号:
2328800 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Harnessing the Advantages of Dark Exciton in Perovskite Nanostructures as the Quantum Emitter and the Source of Charge Carriers
利用钙钛矿纳米结构中暗激子的优势作为量子发射器和电荷载流子源
- 批准号:
2304936 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
- 批准号:
2876830 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Studentship
CAREER: Quantum silicon phononics: Harnessing long-lived phonons for memories and interconnects
职业:量子硅声学:利用长寿命声子进行存储器和互连
- 批准号:
2238058 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
Harnessing Quantum Field Theory For Gravity
利用量子场论研究引力
- 批准号:
ST/V003895/2 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Fellowship
A novel source of quantum light: harnessing cascaded downconversion as a resource for quantum technologies
一种新颖的量子光源:利用级联下转换作为量子技术的资源
- 批准号:
RGPIN-2022-03962 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
Harnessing Quantum Materials to design Antiferromagnetic Topological Textures
利用量子材料设计反铁磁拓扑纹理
- 批准号:
EP/X024938/1 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Fellowship
Harnessing genuine quantum nonlocality
利用真正的量子非定域性
- 批准号:
DP210101651 - 财政年份:2021
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Projects
CAREER: Warm Quantum Materials: Harnessing Exotic Quantum Properties at High Temperatures
职业:温量子材料:在高温下利用奇异的量子特性
- 批准号:
2046796 - 财政年份:2021
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
Harnessing Quantum Entanglement for Quantum-Enhanced Sensing through Interaction-Based Readout
通过基于交互的读出利用量子纠缠进行量子增强传感
- 批准号:
2110052 - 财政年份:2021
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant