CAREER: Anisotropic Femtosecond Spectroscopy of High-Tc Superconductors

职业:高温超导体的各向异性飞秒光谱

基本信息

  • 批准号:
    9734131
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-03-15 至 2003-02-28
  • 项目状态:
    已结题

项目摘要

9734131 Schroeder This is a CAREER Award which will investigate the fundamental properties of intrinsically anisotropic high-TC cuprate superconductors using powerful, sophisticated, and polarization-sensitive time-resolved ultrafast spectroscopic techniques. An ultrabroadband femtosecond terahertz (THz) probe pulse (generated by optical rectification of a 50fs optical pulse) will be used to spectrally time resolve the far-infrared transient response of high-TC superconductors induced by an optical pump pulse through the change in the reflectivity produced by the perturbed complex conductivity. Since the spectral extent of the linearly polarized THz probe pulse includes the superconducting gap 2A, this technique will be used to monitor directly the optically-induced perturbations to the anisotropic order parameter A, the pseudogap in under-doped materials, and transient inter- and intra-plane coupling between Cu-O layers and chains using untwinned Yttrium- and Barium-based cuprate crystals. In addition, to aid the understanding of the time-resolved THz spectra, two-photon excited-state angle-resolved photoemission spectroscopy will be employed to determine the relevant characteristics (lifetime and momentum) of the optically-coupled unoccupied states above the Fermi level. All measurements will be performed as a function of TITC to elucidate temperature dependencies. The results from these carefully designed ultrafast spectroscopic measurements should have a great impact on our understanding of the unique properties of high-TC superconductors in a manner parallel to that provided by similar femtosecond optical techniques in semiconductor physics. The educational component will involve both undergraduate physics majors and students from Chicago area high schools in research in the investigators laboratory that is connected to the goals of the project. %%% This is a CAREER Award which uses sophisticated optical methods to study high temperature superconductor s. The discovery in 1986 of copper-oxide-based ceramic materials, which exhibit zero electrical resistance at liquid nitrogen (-3 F) (rather than liquid helium (-450 F)) temperatures, has ignited technological interest in superconductivity as a means of dramatically reducing energy distribution costs, developing efficient high-speed levitating transportation, and making ultrafast electronic switches. However, despite a decade of exciting research into the properties of high-temperature superconductors (HTSCs), a definitive experiment leading to a clear understanding of the physical mechanism responsible for superconductivity in these unique materials has not been forthcoming. The goal of this research program is to exploit the sub-picosecond (shorter than one-thousand-billionth of a second) temporal resolution provided by today's laser technology to study the fundamental physical processes occurring in HTSCs. Specifically, ultrashort pulses of far-infrared radiation will be used to monitor the response of HTSCs in an effort to time-resolve the mechanism responsible for superconductivity in these ceramic materials. These ultrafast optical investigations will open a new regime of study for superconductivity in which radiation is used to monitor directly the electronic dynamics of the superconducting state. The results from these novel spectroscopic studies should have a significant impact on our understanding of the unique properties of HTSCs which, in turn, may lead to the development of superconductors operating at even higher temperatures. Indeed, similar ultrafast optical techniques have already improved our understanding and design of everyday semiconductor devices. The educational component will involve both undergraduate physics majors and students from Chicago area high schools in research in the investigators laboratory that is connected to the goals of the project. ***
小行星9734131 这是一个CAREER奖,将使用强大,复杂和偏振敏感的时间分辨超快光谱技术研究本质各向异性高TC铜酸盐超导体的基本特性。超宽带飞秒太赫兹(THz)探测脉冲(由50 fs光脉冲的光学整流产生)将用于通过反射率的变化来光谱时间分辨由光泵脉冲引起的高TC超导体的远红外瞬态响应。由扰动的复电导率。由于线偏振太赫兹探测脉冲的光谱范围包括超导间隙2A,因此该技术将用于直接监测各向异性序参数A的光致扰动、欠掺杂材料中的赝间隙以及使用非孪晶钇和钡基铜酸盐晶体的Cu-O层和链之间的瞬态面间和面内耦合。此外,为了帮助理解的时间分辨太赫兹光谱,双光子激发态角分辨光电子能谱将被用来确定费米能级以上的光耦合未占态的相关特性(寿命和动量)。 所有测量将作为TTC的函数进行,以阐明温度依赖性。这些精心设计的超快光谱测量的结果应该对我们理解高TC超导体的独特性质产生重大影响,其方式与半导体物理学中类似的飞秒光学技术所提供的方式平行。教育部分将涉及本科物理专业和学生从芝加哥地区的高中在研究人员实验室,是连接到该项目的目标。 这是一个使用先进的光学方法来研究高温超导体的职业奖。1986年发现的氧化铜基陶瓷材料在液氮(-3 F)(而不是液氦(-450 F))温度下表现出零电阻,引发了对超导性的技术兴趣,作为一种显著降低能量分配成本的手段,开发高效的高速悬浮运输,并制造超快电子开关。然而,尽管对高温超导体(HTSC)的性质进行了十年的令人兴奋的研究,但导致对这些独特材料中超导性的物理机制的明确理解的决定性实验尚未到来。该研究计划的目标是利用当今激光技术提供的亚皮秒(短于十亿分之一秒)时间分辨率来研究HTSC中发生的基本物理过程。具体来说,远红外辐射的超短脉冲将用于监测HTSC的响应,以努力在时间上解决这些陶瓷材料中超导性的机制。这些超快光学研究将为超导性的研究开辟一个新的领域,其中辐射被用来直接监测超导态的电子动力学。这些新的光谱研究的结果应该对我们理解HTSC的独特性质产生重大影响,这反过来可能导致在更高温度下工作的超导体的发展。事实上,类似的超快光学技术已经改善了我们对日常半导体器件的理解和设计。教育部分将涉及本科物理专业和学生从芝加哥地区的高中在研究人员实验室,是连接到该项目的目标。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

W. Andreas Schroeder其他文献

Mean transverse energy of ultrananocrystalline diamond photocathode
超纳米晶金刚石光电阴极的平均横向能量
  • DOI:
    10.1063/1.5084167
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Gongxiaohui Chen;G. Adhikari;L. Spentzouris;K. Kovi;S. Antipov;C. Jing;W. Andreas Schroeder;S. Baryshev
  • 通讯作者:
    S. Baryshev

W. Andreas Schroeder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('W. Andreas Schroeder', 18)}}的其他基金

Theory-Driven Experimental Studies of Planar Photocathodes
平面光电阴极的理论驱动实验研究
  • 批准号:
    1535279
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Development of an Ultrafast Electron Microscope with <1nm-ps Spatio-Temporal Resolution
MRI:超快电子显微镜的开发
  • 批准号:
    0619573
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NER: Nanoscale Photocathodes for Ultrafast Electron Microscopy
NER:用于超快电子显微镜的纳米级光电阴极
  • 批准号:
    0508143
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of an all-optical, broadband electron paramagnetic resonance spectrometer with picosecond time-resolution
开发皮秒时间分辨率的全光学宽带电子顺磁共振波谱仪
  • 批准号:
    0116622
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of an Ultraviolet Femtosecond Radiation Source -for Time-Resolved Excited-State Photoemission and - Flourescence Studies
用于时间分辨激发态光电发射和荧光研究的紫外飞秒辐射源的开发
  • 批准号:
    9803028
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A Compact Laser Excited Coherent X-ray Source for Macromolecular Imaging
用于高分子成像的紧凑型激光激发相干 X 射线源
  • 批准号:
    9513266
  • 财政年份:
    1996
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Dynamics of Binary Anisotropic Magnetic Colloids
职业:二元各向异性磁胶体动力学
  • 批准号:
    2338064
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Development of a 3D-printed anisotropic heart-on-a-chip for drug screening applications
开发用于药物筛选应用的 3D 打印各向异性芯片心脏
  • 批准号:
    EP/X02721X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Anisotropic single-particle transducers
各向异性单粒子换能器
  • 批准号:
    DE230100079
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
Diagnosis of anisotropic and non-equilibrium energy distribution by collisional radiative process of volumetric recombining plasma
体积重组等离子体碰撞辐射过程诊断各向异性和非平衡能量分布
  • 批准号:
    23H01148
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Study of Anisotropic Dust Interactions in the PK-4 Experiment
合作研究:PK-4 实验中各向异性尘埃相互作用的研究
  • 批准号:
    2308743
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
  • 批准号:
    2232579
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
  • 批准号:
    2224309
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ERI: Solubility-Boosting Effect of Lattice Impurities in Anisotropic Crystals
ERI:各向异性晶体中晶格杂质的增溶作用
  • 批准号:
    2301629
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了