Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
基本信息
- 批准号:2323917
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microrobots have the potential to reach deep organs to deliver drugs or perform minimally invasive surgeries. But to realize such a vision, several scientific and technological challenges need to be resolved, key among them is the design of robotic systems tailored for efficient swimming and maneuvering in biological fluids. These fluids have unique physical and rheological properties that can facilitate or hinder cell movement. Inspired by the swimming motions of sperm cells, this project aims to develop, control, and analyze the motion of magnetically driven, sperm-like soft microrobots in nanofiber fluid suspensions with properties analogous to cervical mucus. Research thrusts of this NSF funded project will be tightly coupled with comprehensive educational and outreach activities, and are designed to educate and train future scientists and engineers from diverse backgrounds in interdisciplinary research at the intersection of dynamics and control, robotics, biomaterials, and fluid mechanics.The research activities will combine experimental and computational efforts to: (a) study fluid-structure interactions of magnetoelastic undulatory microrobots in artificial cervical mucus (ACM); (b) seek optimal swimming gaits and minimal feedback controllers; (c) exploit orientation-dependent swimming behavior to detect fluid properties and steer to the microrobot to specific sites. High-resolution 3D printing will be used to fabricate soft microrobots with larger number of degrees of freedom than their rigid counterparts, leading to greater motility as they negotiate obstacles in gel-like ACMs. Remote magnetic control will drive complex flagellum beating patterns to generate straight and turning motions. In accompanying computer simulations, Immersed Boundary methods will be used to resolve fluid-structure interactions of single and multiple microrobots in ACMs, and uncover their orientation-dependent swimming mechanisms. The data will then be used with state-of-the-art multi-objective optimization tools, to construct a minimal model-free control strategy. Successful completion of these research tasks will result in a new paradigm for microrobot design, analysis, optimization, and evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微型机器人有可能到达深层器官,以输送药物或进行微创手术。但要实现这一愿景,需要解决几个科学和技术挑战,其中关键是设计适合在生物液体中有效游泳和操纵的机器人系统。这些液体具有独特的物理和流变特性,可以促进或阻碍细胞运动。受精子细胞游泳运动的启发,该项目旨在开发、控制和分析磁驱动、精子样软微型机器人在纳米纤维流体悬浮液中的运动,其性质类似于宫颈粘液。这个NSF资助的项目的研究重点将与全面的教育和推广活动紧密结合,旨在教育和培训来自不同背景的未来科学家和工程师,在动力学和控制,机器人,生物材料和流体力学的交叉领域进行跨学科研究。研究活动将结合联合收割机的实验和计算工作,以:(a)研究磁弹性波动微机器人在人工宫颈粘液(ACM)中的流体-结构相互作用;(B)寻求最佳游泳步态和最小反馈控制器;(c)利用依赖于方向的游泳行为来检测流体性质并将微机器人引导到特定部位。高分辨率3D打印将用于制造比刚性机器人具有更大自由度的软微型机器人,从而在它们通过凝胶状ACM中的障碍物时具有更大的运动性。远程磁力控制将驱动复杂的鞭毛跳动模式,以产生直线和转弯运动。在伴随的计算机模拟中,浸没边界方法将用于解决ACM中单个和多个微型机器人的流体-结构相互作用,并揭示其依赖于方向的游泳机制。然后,这些数据将与最先进的多目标优化工具一起使用,以构建最小的无模型控制策略。成功完成这些研究任务将为微型机器人的设计、分析、优化和评估提供新的范例。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tong Gao其他文献
Platelet-activating factor induces the stemness of ovarian cancer cells via the PAF/PAFR signaling pathway
血小板激活因子通过PAF/PAFR信号通路诱导卵巢癌细胞的干细胞性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tong Gao;Ran Zhao;Liangqing Yao;Congjian Xu;Qing Cong;Wei Jiang - 通讯作者:
Wei Jiang
An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing
采用热弹性拓扑优化设计、增材制造制造的全动舵
- DOI:
10.1016/j.compstruc.2020.106405 - 发表时间:
2021-01 - 期刊:
- 影响因子:4.7
- 作者:
Longlong Song;Tong Gao;Lei Tang;Xinxin Du;Jihong Zhu;Ye Lin;Guanghui Shi;Hui Liu;Guannan Zhou;Weihong Zhang - 通讯作者:
Weihong Zhang
Tensored Generalized Hough Transform for Object Detection in Remote Sensing Images
用于遥感图像中目标检测的张量广义霍夫变换
- DOI:
10.1109/jstars.2020.3003137 - 发表时间:
2020-06 - 期刊:
- 影响因子:5.5
- 作者:
Hao Chen;Tong Gao;Guodong Qian;Wen Chen;Ye Zhang - 通讯作者:
Ye Zhang
A novel core-shell TiCx particle by modifying TiCx with B element and the preparation of the (TiCx +AlN)/Al composite
B元素改性TiCx新型核壳TiCx粒子及(TiCx AlN)/Al复合材料的制备
- DOI:
10.1016/j.jallcom.2021.162448 - 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Lei Ren;Tong Gao;Jinfeng Nie;Guiliang Liu;Xiangfa Liu - 通讯作者:
Xiangfa Liu
In-situ synthesis of nano SiC particles in Al–Si–C system at 750°C
Al-Si-C体系750℃原位合成纳米SiC颗粒
- DOI:
10.1016/j.jmrt.2021.05.008 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Chongchong Wu;Tong Gao;Jinfeng Nie;Liang Jiang;Xiangfa Liu - 通讯作者:
Xiangfa Liu
Tong Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tong Gao', 18)}}的其他基金
OAC Core: Small: Efficient and scalable tools for design and analysis of active matter systems
OAC 核心:小型:用于设计和分析活性物质系统的高效且可扩展的工具
- 批准号:
2007181 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Unveiling the Stability, Rheology, and Topology of Active Fluids
职业生涯:揭示活性流体的稳定性、流变性和拓扑结构
- 批准号:
1943759 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Multiscale cardiac fluid-structure-growth model
多尺度心脏液体结构生长模型
- 批准号:
1702987 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
- 批准号:
1619960 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
- 批准号:
DE240101045 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Early Career Researcher Award
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
- 批准号:
2344460 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
- 批准号:
2347477 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
- 批准号:
2338752 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Bioinspired photoreceptor and smart neural mimicking technologies
仿生感光器和智能神经模仿技术
- 批准号:
DP240100145 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Bioinspired Ceramifiable Fire-Retardant Composite Coatings
仿生陶瓷阻燃复合涂料
- 批准号:
DP240102628 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Bioinspired Membranes for Water Purification
用于水净化的仿生膜
- 批准号:
EP/Y001443/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Bioinspired Multiplexed Ultrasensitive Biosensing
仿生多重超灵敏生物传感
- 批准号:
EP/Z000130/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231031 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231032 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant