Atomistic Theory and Computer Simulation of Grain Boundary Structure and Diffusion

晶界结构和扩散的原子理论和计算机模拟

基本信息

项目摘要

9753243 Farkas This project is aimed at theoretical investigations and computer simulations of point defects and grain boundaries, as well as diffusion in the lattice and along grain boundaries in ordered compounds. The focus of research will be the intermetallic compound NiAl. The project includes collaborations with groups working on ab initio calculations and on diffusion experiments. Atomic structure and diffusion along grain boundaries in intermetallic compounds are of great interest in connection with their limited ductility and high-temperature creep resistance. Grain boundary diffusion in NiAl has never been studied experimentally or theoretically. Moreover, correct atomistic calculations of grain boundary diffusion coefficients have only become possible recently due to work done by the proposers on the jump correlation theory and the development of the respective simulation methods. These theory and simulation techniques will be further improved and applied to grain boundaries in NiAl. Angular-dependent semi-empirical potentials of the embedded- atom type will be developed for NiAl by fitting to both experimental properties and to the results of ab initio calculations. The atomic structure for 001 and 011 symmetrical tilt grain boundaries will be calculated using molecular statics and dynamics. The formation energies and equilibrium concentrations of point defects in the lattice and in the grain boundaries will be calculated. The atomic migration energies by different mechanisms in the lattice and in the grain boundary cores will also be calculated. The point defect concentrations and migration energies obtained will be used for the calculation of lattice and grain boundary diffusion coefficients of Ni and Al using novel methods of jump correlation theory and the Monte Carlo method. The diffusion coefficients obtained will be compared with the experimental data obtained from experimental collaborators. NiAl will thus become the first ordered system, probably even the first binary system, where diffusion of both species in the lattice and along the grain boundaries will be studied by both experimental and theoretical methods. %%% This project is aimed at theoretical investigations and computer simulations of point defects and grain boundaries, as well as diffusion in the lattice and along grain boundaries in ordered compounds. The focus of research will be the intermetallic compound NiAl. The project includes collaborations with groups working on ab initio calculations and on diffusion experiments. NiAl will thus become the first ordered system, probably even the first binary system, where diffusion of both species in the lattice and along the grain boundaries will be studied by both experimental and theoretical methods. ***
这个项目的目的是理论研究和计算机模拟点缺陷和晶界,以及在有序化合物中的晶格和沿晶界的扩散。研究的重点是金属间化合物NiAl。该项目包括与从事从头计算和扩散实验的小组合作。金属间化合物的原子结构和沿晶界的扩散与它们有限的延展性和高温蠕变性能有关。NiAl的晶界扩散从未在实验或理论上进行过研究。此外,由于跳跃相关理论的提出和相应模拟方法的发展,正确的晶界扩散系数的原子计算最近才成为可能。这些理论和模拟技术将进一步完善并应用于NiAl的晶界研究。通过拟合实验性质和从头计算结果,将开发出与角相关的嵌入原子型半经验势。利用分子静力学和动力学方法计算001和011对称倾斜晶界的原子结构。计算了点状缺陷在晶格和晶界的形成能和平衡浓度。计算了原子在晶格和晶界核中不同机制下的迁移能。得到的点缺陷浓度和迁移能将利用跳变相关理论和蒙特卡罗方法计算Ni和Al的晶格和晶界扩散系数。得到的扩散系数将与实验合作者得到的实验数据进行比较。因此,NiAl将成为第一个有序系统,甚至可能是第一个二元系统,在这个系统中,两种物质在晶格中的扩散和沿晶界的扩散将通过实验和理论方法来研究。这个项目的目的是理论研究和计算机模拟点缺陷和晶界,以及在有序化合物的晶格和沿晶界扩散。研究的重点是金属间化合物NiAl。该项目包括与从事从头计算和扩散实验的小组合作。因此,NiAl将成为第一个有序系统,甚至可能是第一个二元系统,在这个系统中,两种物质在晶格中的扩散和沿晶界的扩散将通过实验和理论方法来研究。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diana Farkas其他文献

Nanoporous metals under extremes
  • DOI:
    10.1557/s43577-025-00885-z
  • 发表时间:
    2025-04-02
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Carlos J. Ruestes;Diana Farkas;Joshua Snyder
  • 通讯作者:
    Joshua Snyder
Planar fault energies and dislocation core spreading in B2 NiAl
  • DOI:
    10.1557/jmr.1993.3050
  • 发表时间:
    2011-03-03
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Diana Farkas;Christophe Vailhe
  • 通讯作者:
    Christophe Vailhe
High-Throughput Machine Learning - Kinetic Monte Carlo Framework for Diffusion Studies in Equiatomic and Non-equiatomic FeNiCrCoCu High-Entropy Alloys
高通量机器学习 - 用于等原子和非等原子 FeNiCrCoCu 高熵合金扩散研究的动力学蒙特卡罗框架
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wenjiang Huang;Diana Farkas;Xian
  • 通讯作者:
    Xian
Determination of grain boundary geometry using TEM
使用 TEM 确定晶界几何形状
  • DOI:
    10.1557/jmr.1992.1707
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    H. Jang;Diana Farkas;J. Hosson
  • 通讯作者:
    J. Hosson
The role of compositional complexity in the increased fracture resistance of high entropy alloys: Multi-scale atomistic simulations
  • DOI:
    10.1016/j.commatsci.2023.112758
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Diana Farkas
  • 通讯作者:
    Diana Farkas

Diana Farkas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diana Farkas', 18)}}的其他基金

DMREF/Collaborative Research: Designing and Synthesizing Nano-Metallic Materials with Superior Properties
DMREF/合作研究:设计和合成具有优越性能的纳米金属材料
  • 批准号:
    1533969
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Design Guidelines for High Strength Multicomponent Alloys
高强度多组分合金设计指南
  • 批准号:
    1507846
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Symposium: Massively Parallel Simulations of Materials Response
研讨会:材料响应的大规模并行模拟
  • 批准号:
    1047848
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
NSF-Europe: Computer Simulation of Fracture and Deformation Behavior of Nanocrystalline Metallic Materials
NSF-欧洲:纳米晶金属材料断裂和变形行为的计算机模拟
  • 批准号:
    0243947
  • 财政年份:
    2003
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
U.S.-Argentina Cooperative Research: Atomistic Simulation of Defect Structures in Intermetallic Alloys
美国-阿根廷合作研究:金属间合金缺陷结构的原子模拟
  • 批准号:
    9512968
  • 财政年份:
    1996
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
U.S.-Argentina Cooperative Science Program: Computer Simulation of Defect Structure in Intermetallic Alloys
美国-阿根廷合作科学项目:金属间合金缺陷结构的计算机模拟
  • 批准号:
    9201759
  • 财政年份:
    1992
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Faculty Awards for Women Scientists and Engineers
女科学家和工程师学院奖
  • 批准号:
    9024161
  • 财政年份:
    1991
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
U.S.-Argentina Cooperative Research: Theoretical Models forRadiation-Enhanced Diffusion During Ion Implantation
美国-阿根廷合作研究:离子注入过程中辐射增强扩散的理论模型
  • 批准号:
    8815682
  • 财政年份:
    1989
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
U.S.-Argentina Cooperative Research: Theoretical Models for Radiation-Enhanced Diffusion (Condensed Matter Theory)
美国-阿根廷合作研究:辐射增强扩散的理论模型(凝聚态理论)
  • 批准号:
    8502374
  • 财政年份:
    1985
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Theoretical Models For Radiation-Enhanced Diffusion
辐射增强扩散的理论模型
  • 批准号:
    8412040
  • 财政年份:
    1984
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
  • 批准号:
    2342438
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Creating a new theory of computer algebra with duality spaces
创建具有对偶空间的计算机代数新理论
  • 批准号:
    23K03076
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Student Travel Grant for 2022 Theoretical Computer Science (TCS) Women Meeting at Symposium on Theory of Computing (STOC)
NSF 学生旅费补助金用于 2022 年理论计算机科学 (TCS) 女性在计算理论研讨会 (STOC) 上的会议
  • 批准号:
    2226116
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Student Learning Outcomes in Computer Science Theory Courses Using Conceptual Models
协作研究:使用概念模型提高计算机科学理论课程中学生的学习成果
  • 批准号:
    2135438
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Student Learning Outcomes in Computer Science Theory Courses Using Conceptual Models
协作研究:使用概念模型提高计算机科学理论课程中学生的学习成果
  • 批准号:
    2135431
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Study on network design theory for advanced computer communication
先进计算机通信网络设计理论研究
  • 批准号:
    21K11759
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards a physical theory of computer science.
走向计算机科学的物理理论。
  • 批准号:
    EP/T008296/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Development of syntactic theory using a Minimalist Program-based computer model that generates sentences
使用基于极简程序的计算机模型生成句子来发展句法理论
  • 批准号:
    20K00664
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Student Travel Grant for 2019 Theoretical Computer Science (TCS) Women Meeting at Symposium on Theory of Computing (STOC)
NSF 学生旅费补助金用于 2019 年理论计算机科学 (TCS) 女性在计算理论研讨会 (STOC) 上的会议
  • 批准号:
    1931307
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了