Ergodic Theory, Differential Dynamics and Combinatorial Number Theory
遍历理论、微分动力学和组合数论
基本信息
- 批准号:9800861
- 负责人:
- 金额:$ 43.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Katznelson/Ornstein Furstenberg, Katznelson, Ornstein, and Weiss will continue and expand several long-term projects dealing with stability, as well as properties of limit sets and other limit behavior, of dynamical systems. Among the projects on stability: 1) We have devloped an alternative approach to problems that seemed accessible only via the KAM strategy. In dimensions one and two we obtained finer results both in the smoothness of the conjugation of circle diffeomorphism (completing the pioneering results of Herman and Yoccoz) and persistence under perturbation of twist maps of certain invariant circles (Moser's theorem and extensions), as well as smoothness of curves invariant under surface diffeomorphism. These methods look promising as tools for the study of existence and smoothness of invariant tori in higher dimensions. 2) Establishing that a flow is Bernoulli not only characterizes it completely as an abstract measure theoretic flow, but also serves as the main step in proving statistical stability. We are in the process of formalizing general criteria for Bernoullicity of flows. Among the projects on limit behavior we mention the study of multiple recurrence with polynomial times and problems dealing with dimensions of fractals and other limit sets. Dynamical systems are mathematical models of evolutionary phenomena in both natural and social sciences. They also provide important tools in statistics, computer sciences, combinatorics, etc. In this broad and broadening subject, we direct our main effort to problems dealing with stability: to what extent are the perceived properties of a system robust, that is, will persist if the system is perturbed (modified) somewhat. In any sort of practical application, where the data and the parameters are known only approximately, one can hardly rely on properties which are not stable. One of our main projects is to find conditions which guarantee the existence of surfaces invariant under the system. In the right dimension, such (hyper) surfaces separate the space into invariant regions, or domains from which orbits cannot escape, and if the surface persists under perturbation-so do the domains. In other words, we can guarantee that some conditions will never evolve into some other (specific) type.
摘要Katznelson/Ornstein Furstenberg,Katznelson,Ornstein和韦斯将继续和扩展几个长期项目,处理稳定性,以及极限集和其他极限行为的性质,动力系统。在关于稳定性的项目中:1)我们已经开发了一种替代方法来解决似乎只能通过KAM策略才能解决的问题。在一维和二维中,我们得到了更好的结果,无论是在光滑的共轭的圆仿射(完成开创性的结果赫尔曼和Yoccoz)和持久性扰动下的扭曲映射的某些不变的圆(Moser定理和扩展),以及光滑的曲线不变下的表面仿射。 这些方法 作为研究高维不变环面的存在性和光滑性的工具是很有前途的。 2)建立一个流是伯努利流,不仅将它完全刻画为一个抽象测度流,而且也是证明统计稳定性的主要步骤。我们正在正式的过程中的一般标准的伯努利流。在极限行为的项目中,我们提到了多项式时间的多重递归的研究和分形维数和其他极限集的处理问题。 动力系统是自然科学和社会科学中进化现象的数学模型。他们还提供了重要的工具,统计,计算机科学,组合学等,在这个广泛的和不断扩大的主题,我们直接我们的主要努力的问题处理稳定性:在何种程度上是一个系统的感知属性强大,也就是说,将持续如果系统受到扰动(修改)有点。 在任何一种实际应用中,当数据和参数只是近似地已知时,人们很难依赖不稳定的性质。我们的主要项目之一是找到条件,保证存在的表面不变的系统。在正确的维度上,这样的(超)表面将空间分隔成不变的区域,或者说是轨道无法逃脱的区域,如果表面在微扰下持续存在,那么区域也是如此。换句话说,我们可以保证某些条件永远不会演变成其他(特定)类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Ornstein其他文献
Donald Ornstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Ornstein', 18)}}的其他基金
Ergodic Theory, Differential Dynamics and Combinatorial Number Theory
遍历理论、微分动力学和组合数论
- 批准号:
0100581 - 财政年份:2001
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ergodic Theory, Differential Dynamicsand Combinatorial Number Theory
数学科学:遍历理论、微分动力学和组合数论
- 批准号:
9501383 - 财政年份:1995
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ergodic Theory and Combinatorics
数学科学:遍历理论和组合学
- 批准号:
9208814 - 财政年份:1992
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ergodic Theory and Combinatorics
数学科学:遍历理论和组合学
- 批准号:
8909876 - 财政年份:1989
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability and Ergodic Theory
数学科学:概率和遍历理论
- 批准号:
8605098 - 财政年份:1986
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability and Ergodic Theory
数学科学:概率和遍历理论
- 批准号:
8107092 - 财政年份:1981
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Isomorphism Problems in Ergodic Theory and Applications
遍历理论及其应用中的同构问题
- 批准号:
7808738 - 财政年份:1978
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
A Framework For Parametric Statistical Inference For (Stationary) Stochastic Processes
(平稳)随机过程的参数统计推断框架
- 批准号:
7707756 - 财政年份:1977
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
$ 43.61万 - 项目类别:
Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
- 批准号:
22KF0255 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New developments in inverse theory for differential equation networks: from trees to general graphs
微分方程网络逆理论的新进展:从树到一般图
- 批准号:
2308377 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
Expanding the theory and applications of differential ion mobility spectrometry for rapid screening of hazardous substances
拓展微分离子淌度光谱法快速筛查有害物质的理论和应用
- 批准号:
547982-2020 - 财政年份:2022
- 资助金额:
$ 43.61万 - 项目类别:
Postgraduate Scholarships - Doctoral
Algorithmic Watchdog for Differential Privacy: From Theory to Practice
差异隐私的算法看门狗:从理论到实践
- 批准号:
DGECR-2022-00429 - 财政年份:2022
- 资助金额:
$ 43.61万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




