Infinite-Dimensional Banach and Operator Spaces
无限维 Banach 和算子空间
基本信息
- 批准号:9801153
- 负责人:
- 金额:$ 7.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTOdell This project involves several open problems in geometric functional analysis. 1) Does there exist a distortable Banach space of bounded distortion? 2) If all spreading models of any block basis of a given basis for X are 1-equivalent to some l_p space does X contain l_p? 3) Must every Banach space admit a "nice" spreading model? 4) The study of the ordinal l_1(+) index of a Banach space. In the usual geometry of space one can measure the distance between two points by means of a carpenter's tape measure (distance is measured "as the crow flies"). There are however other natural distances which a mathematician encounters. For example the "taxicab distance" between two points on this surface would be the distance between the points as measured by a taxi that could only travel horizontally or vertically (imagine all roads run N-S or E-W). Mathematicians must study the geometry of these different notions of distance in order to solve those problems from whence the geometry arose. Furthermore many mathematical problems require one to work in spaces of higher than three dimensions, even infinite dimensional space (for example in quantum mechanics differential equations,...). This project concerns such problems. For example the author and Th. Schlumprecht proved that ordinary (tape measure) infinite dimensional space could have its geometry altered ("distorted") so as to be that one could not recapture the original geometry up to any given multiple in any infinite dimensional "slice". This is false for the taxicab geometry. But it remains a famous open problem as to whether or not there exists a geometry which can be altered but not too badly. Other problems of this project involve determining infinite dimensional substructures of a geometry given limited "asymptotical" (less than infinite dimensional but more than finite dimensional) information.
摘要该项目涉及几何泛函分析中的几个开放性问题。 1)是否存在有界扭曲的可扭曲Banach空间? 2) 如果 X 的给定基的任何块基的所有扩展模型都是 1-等价于某个 l_p 空间,那么 X 是否包含 l_p? 3)每个Banach空间都必须承认一个“好的”传播模型吗? 4) Banach空间序数l_1(+)索引的研究。 在通常的空间几何中,人们可以用木匠的卷尺测量两点之间的距离(距离是“直线测量”的)。 然而,数学家还遇到其他自然距离。 例如,该表面上两点之间的“出租车距离”将是由只能水平或垂直行驶的出租车测量的点之间的距离(想象所有道路都是南北或东西走向)。 数学家必须研究这些不同距离概念的几何,以便解决几何产生的问题。 此外,许多数学问题需要在高于三维空间,甚至无限维空间中工作(例如在量子力学微分方程中,......)。 本项目涉及此类问题。 例如作者和Th。施伦普雷希特证明,普通(卷尺)无限维空间的几何形状可能会改变(“扭曲”),以致人们无法在任何无限维“切片”中重新捕获原始几何形状直至任何给定的倍数。 对于出租车几何形状来说,这是错误的。但是否存在可以改变但不会太严重的几何形状仍然是一个著名的悬而未决的问题。 该项目的其他问题涉及在给定有限的“渐近”(小于无限维但大于有限维)信息的情况下确定几何的无限维子结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Odell其他文献
The acute influence of tobacco smoking on adhesion molecule expression on monocytes and neutrophils and on circulating adhesion molecule levels in vivo
吸烟对单核细胞和中性粒细胞粘附分子表达以及体内循环粘附分子水平的急性影响
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:3.4
- 作者:
D. Scott;D. H. Todd;P. Coward;R. Wilson;Edward Odell;R. Poston;J. P. Matthews;R. Palmer - 通讯作者:
R. Palmer
Elastase in gingival crevicular fluid from smokers and non-smokers with chronic inflammatory periodontal disease.
患有慢性炎症性牙周病的吸烟者和非吸烟者的龈沟液中的弹性蛋白酶。
- DOI:
10.1111/j.1601-0825.1995.tb00173.x - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
Al Alavi;Richard Palmer;Edward Odell;P. Coward;R. Wilson - 通讯作者:
R. Wilson
15. Histopathological features and outcomes of poorly differentiated thyroid carcinoma
- DOI:
10.1016/j.ejso.2015.08.091 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Jay Goswamy;Jean-Pierre Jeannon;Johnathan Hubbard;Ash Chandra;Rose Ngu;Mufaddal Moonim;Edward Odell;Paul Carroll;Jake Powrie;Hosahalli Mohan;Mary Lei;Ricard Simo - 通讯作者:
Ricard Simo
Integrated media presentation in multidisciplinary head and neck oncology meetings
- DOI:
10.1007/s00405-008-0819-1 - 发表时间:
2008-12-05 - 期刊:
- 影响因子:2.200
- 作者:
Ricard Simo;Peter Morgan;Jean-Pierre Jeannon;Edward Odell;John Harrison;Bernice Almeida;Mark McGurk;Andrew Lyons;Karim Hussain;Michael Gleeson;Mary O’Connell;Frances Calman;Roy Ng;Paul Roblin;Steve Connor;Michael Fenlon;Mary Burke;Ashish Chandra;Amanda Herbert;Sarah Patt;Lizzie Steward-Bagley;Rachael Donnelly;Lesley Freeman;Claire Twinn;Carolyn Mason - 通讯作者:
Carolyn Mason
Impact of WWOX alterations on p73, ΔNp73, p53, cell proliferation and DNA ploidy in salivary gland neoplasms.
WWOX 改变对唾液腺肿瘤中 p73、ΔNp73、p53、细胞增殖和 DNA 倍性的影响。
- DOI:
10.1111/j.1601-0825.2011.01802.x - 发表时间:
2011 - 期刊:
- 影响因子:3.8
- 作者:
C. Gomes;M. G. Diniz;Carla de Souza Oliveira;Mahvash Tavassoli;Edward Odell;RS Gomez;L. Marco - 通讯作者:
L. Marco
Edward Odell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Odell', 18)}}的其他基金
Geometry of Banach spaces; connections with other areas
Banach 空间的几何;
- 批准号:
0700126 - 财政年份:2007
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Applications of Logic, Set Theory and Combinatorics to the Geometry of Banach Spaces
逻辑、集合论和组合学在 Banach 空间几何中的应用
- 批准号:
0400054 - 财政年份:2004
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
Asymptotic structures in Banach spaces
Banach 空间中的渐近结构
- 批准号:
0099366 - 财政年份:2001
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Problems in Banach Space Theory
数学科学:巴拿赫空间理论的一些问题
- 批准号:
8201635 - 财政年份:1982
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
Embedding Problems in Banach Spaces
Banach 空间中的嵌入问题
- 批准号:
7801344 - 财政年份:1978
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Falconer's Distance Set Conjecture in Infinite-Dimensional Banach Spaces
无限维 Banach 空间中的 Falconer 距离集猜想
- 批准号:
553891-2020 - 财政年份:2020
- 资助金额:
$ 7.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
- 批准号:
20K03640 - 财政年份:2020
- 资助金额:
$ 7.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural properties of infinite dimensional Banach spaces
无限维 Banach 空间的结构性质
- 批准号:
312594-2010 - 财政年份:2014
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Structural properties of infinite dimensional Banach spaces
无限维 Banach 空间的结构性质
- 批准号:
312594-2010 - 财政年份:2013
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Structural properties of infinite dimensional Banach spaces
无限维 Banach 空间的结构性质
- 批准号:
312594-2010 - 财政年份:2012
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Structural properties of infinite dimensional Banach spaces
无限维 Banach 空间的结构性质
- 批准号:
312594-2010 - 财政年份:2011
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Structural properties of infinite dimensional Banach spaces
无限维 Banach 空间的结构性质
- 批准号:
312594-2010 - 财政年份:2010
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Structural properties of infinite dimensional banach spaces
无限维banach空间的结构性质
- 批准号:
312594-2005 - 财政年份:2009
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Structural properties of infinite dimensional banach spaces
无限维banach空间的结构性质
- 批准号:
312594-2005 - 财政年份:2008
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic phenomena in finite and infinite-dimensional Banach spaces
有限和无限维 Banach 空间中的渐近现象
- 批准号:
8854-2003 - 财政年份:2007
- 资助金额:
$ 7.28万 - 项目类别:
Discovery Grants Program - Individual