Algorithmic Number Theory Symposium III
算法数论研讨会三
基本信息
- 批准号:9801395
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-05-01 至 1999-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9801395 Buhler This award supports a five-day international conference on algorithmic number theory to be held at Reed College in June 1998. This is the third conference in the Algorithmic Number Theory Symposia (ANTS) series. The ANTS conferences were organized to encourage not only the usual kind of number-crunching associated with number theory, but also some of the newer aspects, including algebraic number theory and geometry, applications to other fields such as cryptography, and theoretical investigations of computational complexity. Twenty years ago many of these ideas would have seemed very foreign to number theorists, but their increasing importance has led to a widely perceived need for a conference devoted entirely to algorithmic concerns, both practical and theoretical. This conference falls into the general mathematical field of number theory. Number theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century it has become an indispensable tool in diverse applications in areas such as data transmission and processing, cryptography, and communication systems.
9801395 Buhler 该奖项支持将于 1998 年 6 月在里德学院举行的为期五天的算法数论国际会议。这是算法数论研讨会 (ANTS) 系列的第三次会议。组织 ANTS 会议的目的不仅是鼓励与数论相关的常见数字运算,而且还鼓励一些较新的方面,包括代数数论和几何、密码学等其他领域的应用以及计算复杂性的理论研究。二十年前,其中许多想法对于数论学家来说似乎非常陌生,但它们日益重要,导致人们普遍认为需要召开一次完全致力于算法问题的会议,无论是实践还是理论。 本次会议属于数论的一般数学领域。 数论的历史根源在于对整数的研究,解决诸如一个整数能否被另一个整数整除等问题。它是数学最古老的分支之一,几个世纪以来纯粹出于美学原因而被人们所追求。然而,在过去的半个世纪中,它已成为数据传输和处理、密码学和通信系统等领域的各种应用中不可或缺的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joe Buhler其他文献
A recursive construction for universal cycles of 2-subspaces
- DOI:
10.1016/j.disc.2008.11.040 - 发表时间:
2009-09-06 - 期刊:
- 影响因子:
- 作者:
Bradley W. Jackson;Joe Buhler;Ray Mayer - 通讯作者:
Ray Mayer
Joe Buhler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
- 批准号:
2401305 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/3 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Fellowship
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/2 - 财政年份:2021
- 资助金额:
$ 1.5万 - 项目类别:
Fellowship
ANTS XIV: Algorithmic Number Theory Symposium 2020
ANTS XIV:2020 算法数论研讨会
- 批准号:
1946311 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/1 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Fellowship
Algorithmic Number Theory Symposium 2018
2018年算法数论研讨会
- 批准号:
1802687 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Topics in algorithmic and computational number theory
算法和计算数论主题
- 批准号:
7649-2010 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Elementary, analytic, and algorithmic number theory: Research inspired by the mathematics of Carl Pomerance
初等数论、解析数论和算法数论:受 Carl Pomerance 数学启发的研究
- 批准号:
1502336 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Topics in algorithmic and computational number theory
算法和计算数论主题
- 批准号:
7649-2010 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Topics in algorithmic and computational number theory
算法和计算数论主题
- 批准号:
7649-2010 - 财政年份:2013
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual