Elementary, analytic, and algorithmic number theory: Research inspired by the mathematics of Carl Pomerance
初等数论、解析数论和算法数论:受 Carl Pomerance 数学启发的研究
基本信息
- 批准号:1502336
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Elementary, analytic, and algorithmic number theory: Research inspired by the mathematics of Carl Pomerance" will be held June 9-11, 2015 at the University of Georgia in Athens, GA. The focus of this meeting is on three subfields of number theory: elementary number theory (which studies the basic properties of the natural numbers), analytic number theory (which takes a statistical perspective on these questions), and algorithmic number theory (which investigates how computers can be of assistance in answering number-theoretic questions). These three areas of mathematics are highly interconnected, with results in one area often stemming from progress in the other. While of fundamental theoretical importance, ideas from these fields have also found numerous applications outside of pure mathematics, digital security being a prominent example.The conference will feature six hour-long plenary talks and fourteen invited 30-minute talks by experts in these fields. The talks will highlight the current state of research in these fields and draw attention to the central open problems. On June 8, the day prior the start of the main conference activities, the organizers will host a special day of talks by young researchers. The goal here is to give visibility to up and coming mathematicians and to encourage interchange of ideas - both vertically (among students, junior faculty, and world-class researchers) and horizontally (among researchers in different fields of number theory).For more information see the conference web-site: http://www.math.uga.edu/~cp70/CP70/Home.html
会议“基本的,分析的,和算法数论:由卡尔Pomerance数学启发的研究”将于2015年6月9日至11日在雅典的格鲁吉亚大学举行。 这次会议的重点是数论的三个子领域:初等数论(研究自然数的基本性质),分析数论(对这些问题采取统计观点)和算法数论(研究计算机如何帮助回答数论问题)。数学的这三个领域是高度相互关联的,一个领域的成果往往源于另一个领域的进步。虽然这些领域的思想具有重要的理论意义,但它们在纯数学之外也有许多应用,数字安全就是一个突出的例子。会议将包括6个小时的全体会议和14个由这些领域的专家邀请的30分钟的演讲。会谈将突出这些领域的研究现状,并提请注意核心的开放问题。6月8日,在主要会议活动开始的前一天,组织者将举办一个由年轻研究人员参加的特别讲座日。这里的目标是让未来的数学家和鼓励思想的交流-无论是纵向(学生,初级教师和世界一流的研究人员)和横向(在数论的不同领域的研究人员)。http://www.math.uga.edu/~cp70/CP70/Home.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Pollack其他文献
Clustering of linear combinations of multiplicative functions
- DOI:
10.1016/j.jnt.2017.05.024 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:
- 作者:
Noah Lebowitz-Lockard;Paul Pollack - 通讯作者:
Paul Pollack
Tu1862 IMPACT OF DISEASE FLARES ON RESOURCE USE, HEALTH-RELATED QUALITY OF LIFE AND PRODUCTIVITY IN UNTREATED CROHN'S DISEASE PATIENTS IN US: AN ANALYSIS OF NATIONAL HEALTH AND WELLNESS SURVEY DATA
- DOI:
10.1016/s0016-5085(24)03763-6 - 发表时间:
2024-05-18 - 期刊:
- 影响因子:
- 作者:
Ana Dubon Garcia;Mirko Sikirica;Paul Pollack;Dominik Naessens;Myrlene Sanon - 通讯作者:
Myrlene Sanon
MIRIKIZUMAB IMPROVES PATIENT ASSESSMENT OF DISEASE SEVERITY AND CHANGE IN DISEASE ACTIVITY IN PATIENTS WITH MODERATELY TO SEVERELY ACTIVE CROHN’S DISEASE
- DOI:
10.1053/j.gastro.2021.12.033 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
David Rubin;Paul Pollack;Theresa Hunter;Mingyang Shan;Lai-Shan Chan;Deanilee Deckard - 通讯作者:
Deanilee Deckard
A note on the least prime that splits completely in a nonabelian Galois number field
- DOI:
10.1007/s00209-018-2162-6 - 发表时间:
2018-10-30 - 期刊:
- 影响因子:1.000
- 作者:
Zhenchao Ge;Micah B. Milinovich;Paul Pollack - 通讯作者:
Paul Pollack
Su1915 - Effect of Maintenance Ustekinumab on Corticosteroid-Free Clinical Outcomes in Patients with Crohn’s Disease
- DOI:
10.1016/s0016-5085(17)32131-5 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Brian G. Feagan;Christopher Gasink;Paul Pollack;Douglas Jacobstein;Long-Long Gao;Jewel Johanns;Ye Miao;Stephan R. Targan;Subrata Ghosh - 通讯作者:
Subrata Ghosh
Paul Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Pollack', 18)}}的其他基金
Statistical Questions in Number Theory and Arithmetic Geometry
数论和算术几何中的统计问题
- 批准号:
2001581 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Statistical problems in elementary, analytic, and algebraic number theory
初等数论、解析数论和代数数论中的统计问题
- 批准号:
1402268 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Analytic Number Theory at the Interface
界面上的解析数论
- 批准号:
2401106 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Projects
Conference: CIRM 2024: Operators on analytic function spaces
会议:CIRM 2024:分析函数空间的算子
- 批准号:
2346736 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Fourier analytic techniques in finite fields
有限域中的傅立叶分析技术
- 批准号:
EP/Y029550/1 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
Conference: NSF Workshop on the Convergence of Smart Sensing Systems, Applications, Analytic and Decision Making
会议:NSF 智能传感系统、应用、分析和决策融合研讨会
- 批准号:
2334288 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Uncovering Institutional Dimensions in Medical Interactions: A Conversation Analytic Perspective
揭示医疗互动中的制度维度:对话分析视角
- 批准号:
23K12177 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry of analytic and algebraic varieties
解析几何和代数簇
- 批准号:
2301374 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant