Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
基本信息
- 批准号:9801609
- 负责人:
- 金额:$ 5.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 1999-05-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Yuan LouDMS-9801609The investigator plans to study three classes of problems: first, the perturbed Gelfand problem and its related ones from Combustion theory. The emphasis will be on the complete description of the exact number solutions of these nonlinear elliptic partial differential equations and the understanding of more complex combustion models; second, the investigator wants to pursue a better understanding of the classical Lotka-Volterra models with diffusion. These models, though deceptively simple-looking, involve tremendous mathematical difficulty. The investigator has been trying to introduce new ideas and develop new methods to solve some open problems in this field; The third class of problem that the investigator will study is the cross-diffusion system, which is a strongly-coupled nonlinear parabolic system. The investigator, in a series of joint work with Wei-Ming Ni, has introduced powerful new methods that can yield very detailed information about the steady-states of these systems. The investigator plans to study the global time existence of this cross-diffusion system, along with the stability of various steady-states. The investigator hopes that the work on this cross-diffusionsystem can be instrumental in understanding general strongly-coupled reaction-diffusion systems. Mathematical problems from biology and combustion theory arenot only mathematically challenging, but also practically important. To be illustrative, let us consider the following ecological problem: suppose that two different species originally live in two separate regions and both of them can survive. Now if we connect these tworegions and let these two species be mixed together in the new region. Besides the existing competitions among the same species, there appears the new competition between two different species. A basic questions is: how can these two species manage coexistence under such new situation? If assuming that these two species are moving randomly, then the problem can be modeled by the classical Lotka-Volterra model, and this model is covered by the second class of problems which the investigator proposes to study. On the other hand, when two species are competing for resources to survive, it is not very reasonable to just add diffusion to the model since individuals are not moving around randomly. Instead, they are moving to places to their advantage, e.g., species prefer places with less population pressures created by competitors. Based on this second assumption, some biologists proposed the cross-diffusion system, i.e., the third class of problems which the investigator will pursue. The investigator hopes that such mathematical work not only yields interesting mathematical results, but also strengthens the understanding of realworld phenomena in various branches of science.
主要研究者:研究者计划研究三类问题:第一类是燃烧理论中的扰动Gelfand问题及其相关问题。重点将是对这些非线性椭圆型偏微分方程的精确数值解的完整描述和更复杂的燃烧模型的理解;第二,研究人员希望更好地理解经典的Lotka-Volterra扩散模型。这些模型虽然看起来简单,但在数学上却有着巨大的困难。研究者一直在尝试引入新的思想和发展新的方法来解决这一领域的一些开放性问题;研究者将要研究的第三类问题是交叉扩散系统,这是一个强耦合的非线性抛物系统。研究人员在与倪伟明的一系列联合工作中,引入了强大的新方法,可以产生有关这些系统稳态的非常详细的信息。研究者计划研究这个交叉扩散系统的全局时间存在性,沿着各种稳态的稳定性。 研究者希望对这个交叉扩散系统的研究能有助于理解一般的强耦合反应扩散系统。生物学和燃烧理论中的数学问题不仅在数学上具有挑战性,而且具有重要的实际意义。为了说明问题,让我们考虑下面的生态问题:假设两个不同的物种最初生活在两个不同的地区,而且它们都能生存。如果我们把这两个区域连接起来,让这两个物种在新的区域混合。除了原有的同种竞争外,还出现了新的异种竞争。一个基本的问题是:这两个物种如何在这样的新形势下共存?如果假设这两个物种是随机移动的,那么这个问题可以用经典的Lotka-Volterra模型来建模,并且这个模型被研究者建议研究的第二类问题所覆盖。另一方面,当两个物种为了生存而竞争资源时,仅仅在模型中添加扩散是不太合理的,因为个体并不是随机移动的。相反,他们正在转移到对他们有利的地方,例如,物种更喜欢竞争对手造成的人口压力较小的地方。基于这第二个假设,一些生物学家提出了交叉扩散系统,即,第三类问题是调查人员要调查的问题。研究人员希望这样的数学工作不仅能产生有趣的数学结果,而且还能加强对各个科学分支中现实世界现象的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Lou其他文献
Efficiency optimization of energy storage centrifugal pump by using energy balance equation and non-dominated sorting genetic algorithms-II
基于能量平衡方程和非支配排序遗传算法-II 的储能离心泵效率优化
- DOI:
10.1016/j.est.2025.115817 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:9.800
- 作者:
Hao Chang;Jinhua Yang;Zengqiang Wang;Guangjie Peng;Renyong Lin;Yuan Lou;Weidong Shi;Ling Zhou - 通讯作者:
Ling Zhou
Unveiling the hidden impact: Subclinical hypercortisolism and its subtle influence on bone health
揭开隐藏的影响:亚临床皮质醇增多症及其对骨骼健康的微妙影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Luping Ren;Huan Chen;Tian Zhang;Qi Pan - 通讯作者:
Qi Pan
Expression and clinical significance of VISTA and PD-L1 in adrenocortical carcinoma
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Ziwei Zhang;Menglian Li;Jianjun Wang;Mengsi Liu;Huan Chen;Yuan Lou;Yijie Wang;Qi Sun;Dalong Zhu;Ping Li;Yan Bi - 通讯作者:
Yan Bi
Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
平流均质环境中Lotka-Volterra竞争系统的定性分析
- DOI:
10.3934/dcds.2016.36.953 - 发表时间:
2015-08 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Dongmei Xiao;Peng Zhou - 通讯作者:
Peng Zhou
Impaired Cognitive Function in Patients With Autonomous Cortisol Secretion in Adrenal Incidentalomas
- DOI:
10.1210/clinem/dgac603 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Meng-si Liu;Zhao-yang Tian;Zhou Zhang;Fan Yang;Yuan Lou;Yi-jie Wang;Yang-jie Zeng;Zi-wei Zhang;Da-long Zhu;Ping Li - 通讯作者:
Ping Li
Yuan Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Lou', 18)}}的其他基金
Evolutionarily Stable Dispersal Strategies in Spatial Models
空间模型中的进化稳定扩散策略
- 批准号:
1411476 - 财政年份:2014
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant
Workshop on Partial Differential Equation Models of Biological Processes
生物过程偏微分方程模型研讨会
- 批准号:
1025482 - 财政年份:2011
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant
Nonrandom Dispersal of Interacting Species in Heterogeneous Landscapes
异质景观中相互作用物种的非随机扩散
- 批准号:
1021179 - 财政年份:2010
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant
Evolution of Conditional Dispersal and Population Dynamics
条件扩散和种群动态的演变
- 批准号:
0615845 - 财政年份:2006
- 资助金额:
$ 5.33万 - 项目类别:
Continuing grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
- 批准号:
9996281 - 财政年份:1998
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 5.33万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
1723066 - 财政年份:2017
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
1723191 - 财政年份:2017
- 资助金额:
$ 5.33万 - 项目类别:
Continuing Grant
Numerical methods for compressible flows, problems in combustion and magnetohydrodynamics
可压缩流、燃烧问题和磁流体动力学的数值方法
- 批准号:
7534-2003 - 财政年份:2007
- 资助金额:
$ 5.33万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for compressible flows, problems in combustion and magnetohydrodynamics
可压缩流、燃烧问题和磁流体动力学的数值方法
- 批准号:
7534-2003 - 财政年份:2006
- 资助金额:
$ 5.33万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for compressible flows, problems in combustion and magnetohydrodynamics
可压缩流、燃烧问题和磁流体动力学的数值方法
- 批准号:
7534-2003 - 财政年份:2005
- 资助金额:
$ 5.33万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for compressible flows, problems in combustion and magnetohydrodynamics
可压缩流、燃烧问题和磁流体动力学的数值方法
- 批准号:
7534-2003 - 财政年份:2004
- 资助金额:
$ 5.33万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for compressible flows, problems in combustion and magnetohydrodynamics
可压缩流、燃烧问题和磁流体动力学的数值方法
- 批准号:
7534-2003 - 财政年份:2003
- 资助金额:
$ 5.33万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive Shock Tube Studies of Current Combustion Kinetics Problems Over Extreme Ranges of Pressure and Temperature
极端压力和温度范围内当前燃烧动力学问题的综合激波管研究
- 批准号:
9974308 - 财政年份:1999
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
- 批准号:
9996281 - 财政年份:1998
- 资助金额:
$ 5.33万 - 项目类别:
Standard Grant