Evolution of Conditional Dispersal and Population Dynamics

条件扩散和种群动态的演变

基本信息

项目摘要

This project investigates the effects of conditional dispersal on dynamics of single and multiple interacting species. A common underlying assumption in theoretical studies of population dynamics is that dispersal rates are uniform across space. However, such simplification can yield misleading results because the surrounding environment can vary both spatially and temporally. Indeed, animals tend to sense and respond to local environmental cues by dispersing directionally, and their movements are often combinations of both random and directed ones. Reaction-diffusion-advection equations serve as one of the major approaches to understanding spatial-temporal processes such as dispersal, and are used in this research to model both random and directed movements of species and population dynamics. Three kinds of conditional dispersal strategies will be studied in this project. The first one is the direct movement of populations along environmental gradients or along density-dependent growth rate gradients, and the goal is to determine the effects of such biased movement on both single population and multiple competing species. The second dispersal strategy concerns area-restricted search of predators, and the purpose is to understand how biased foraging behaviors of predators can induce the aggregation of predators. The third is a dynamical model for ideal free distribution theory, which assumes that species choose habitats in such a way that each individual tries to maximize its reproduction fitness. The aim is to obtain a better understanding of interactions between such dispersal strategy and population dynamics. To address these biological questions, the principal investigator will use mathematical methods which include regularity theory for elliptic and parabolic operators, analysis of eigenvalue problems, maximum principles, bifurcation analysis, monotone system theory, permanence theory, and perturbation analysis.The purpose of this project is to increase our understanding of how populations disperse in response to spatially varying environments, to determine which patterns of dispersal strategy can confer some selective or ecological advantage, and to provide insights on biodiversity issues such as habitat fragmentation and invasions of new species. Preliminary investigations show that the geometry of habitat can play important roles in the evolution of dispersal, and also that strong directed movement of a species can induce coexistence with its competitors. Materials from this project will be modified and used as team projects for a Mathematical Biosciences Institute Summer Program for college teachers and graduate students in mathematics and biology.
本项目研究了条件扩散对单个和多个相互作用物种的动力学的影响。在种群动力学的理论研究中,一个常见的基本假设是扩散速度在空间上是一致的。然而,这种简化可能会产生误导性的结果,因为周围的环境可能会在空间和时间上发生变化。事实上,动物倾向于通过定向分散来感知和响应当地的环境线索,它们的行动往往是随机和定向的组合。反应-扩散-平流方程是理解扩散等时空过程的主要方法之一,在本研究中用于模拟物种的随机和定向运动以及种群动力学。本项目将研究三种条件扩散策略。第一个是种群沿环境梯度或依赖密度的增长率梯度的直接移动,目标是确定这种有偏见的移动对单个种群和多个竞争物种的影响。第二种扩散策略涉及捕食者的区域限制搜索,其目的是了解捕食者的有偏见的觅食行为如何诱导捕食者聚集。第三种是理想自由分布理论的动力学模型,该模型假设物种选择栖息地的方式是每个个体都试图最大化其繁殖适宜性。其目的是更好地了解这种扩散策略与种群动态之间的相互作用。为了解决这些生物学问题,首席研究者将使用数学方法,包括椭圆和抛物型算子的正则性理论、特征值问题的分析、最大值原理、分歧分析、单调系统理论、持久性理论和扰动分析。本项目的目的是增加我们对种群如何随着空间变化的环境而分散的理解,确定哪些扩散策略可以提供一些选择或生态优势,并对栖息地碎片化和新物种入侵等生物多样性问题提供见解。初步研究表明,栖息地的几何形状在物种的扩散演化中起着重要作用,物种的强烈定向运动也可以诱导与其竞争对手共存。这个项目的材料将被修改,并作为数学生物科学学院数学和生物专业教师和研究生暑期项目的团队项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Lou其他文献

Efficiency optimization of energy storage centrifugal pump by using energy balance equation and non-dominated sorting genetic algorithms-II
基于能量平衡方程和非支配排序遗传算法-II 的储能离心泵效率优化
  • DOI:
    10.1016/j.est.2025.115817
  • 发表时间:
    2025-04-10
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Hao Chang;Jinhua Yang;Zengqiang Wang;Guangjie Peng;Renyong Lin;Yuan Lou;Weidong Shi;Ling Zhou
  • 通讯作者:
    Ling Zhou
Unveiling the hidden impact: Subclinical hypercortisolism and its subtle influence on bone health
揭开隐藏的影响:亚临床皮质醇增多症及其对骨骼健康的微妙影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Lou;Luping Ren;Huan Chen;Tian Zhang;Qi Pan
  • 通讯作者:
    Qi Pan
Expression and clinical significance of VISTA and PD-L1 in adrenocortical carcinoma
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Ziwei Zhang;Menglian Li;Jianjun Wang;Mengsi Liu;Huan Chen;Yuan Lou;Yijie Wang;Qi Sun;Dalong Zhu;Ping Li;Yan Bi
  • 通讯作者:
    Yan Bi
Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
平流均质环境中Lotka-Volterra竞争系统的定性分析
Impaired Cognitive Function in Patients With Autonomous Cortisol Secretion in Adrenal Incidentalomas
  • DOI:
    10.1210/clinem/dgac603
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Meng-si Liu;Zhao-yang Tian;Zhou Zhang;Fan Yang;Yuan Lou;Yi-jie Wang;Yang-jie Zeng;Zi-wei Zhang;Da-long Zhu;Ping Li
  • 通讯作者:
    Ping Li

Yuan Lou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Lou', 18)}}的其他基金

Evolutionarily Stable Dispersal Strategies in Spatial Models
空间模型中的进化稳定扩散策略
  • 批准号:
    1411476
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on Partial Differential Equation Models of Biological Processes
生物过程偏微分方程模型研讨会
  • 批准号:
    1025482
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonrandom Dispersal of Interacting Species in Heterogeneous Landscapes
异质景观中相互作用物种的非随机扩散
  • 批准号:
    1021179
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
  • 批准号:
    9996281
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
  • 批准号:
    9801609
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
  • 批准号:
    2242447
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conditional male lethal Anopheles stephensi line for the efficient manufacture of malaria vaccines
用于高效生产疟疾疫苗的条件性雄性致死史氏按蚊品系
  • 批准号:
    10602811
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
  • 批准号:
    10640784
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Generating a novel conditional knockout mouse for a super-enhancer that controls cytokine responsiveness
生成一种新型条件敲除小鼠,用于控制细胞因子反应的超级增强子
  • 批准号:
    10740932
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cis-regulation and conditional chromatin remodeling in development and evolution of ontogenies in horned beetles
角甲虫个体发育和进化中的顺式调节和条件染色质重塑
  • 批准号:
    2243725
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
  • 批准号:
    10642313
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Non Magnetic MRI Conditional External Defibrillator with Reduced Skeletal Muscle Contraction
减少骨骼肌收缩的非磁 MRI 条件性体外除颤器
  • 批准号:
    10698845
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Subcube Conditional Samples And Testing Properties Of Probability Distributions
子立方条件样本和概率分布的测试属性
  • 批准号:
    EP/Y001680/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of deconvolution method for bulk RNA-Seq by conditional variational autoencoder
通过条件变分自动编码器开发批量 RNA-Seq 的反卷积方法
  • 批准号:
    23K11302
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了