Parametric Methodology in Optimization
优化中的参数方法
基本信息
- 批准号:9803089
- 负责人:
- 金额:$ 11.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Questions about what happens to a solution to a problem of optimization when the parameters on which the problem depends are perturbed are important not only in assessing the stability of mathematical models, but also in the design and justification of computational procedures. Issues of parametric dependence are also the key to effective utilization of `cost-to-go' functions in dynamical optimization, whether in optimal control or stochastic programming. This project would advance the methodology for dealing with such dependence and explore its consequences for computation.The latest tools in variational analysis, which are essential becauseof inherent nonsmoothness in parametric dependence, would be applied.Alternative forms of optimality conditions, focused especially on perturbational robustness, would be investigated in a broad framework,both finite- and infinite-dimensional. Cost-to-go functions in convexdynamical optimization would be studied from the new perspective both in deterministic continuous-time models, with their connections to Hamilton-Jacobi theory, and in stochastic discrete-time models, wherethe numerical potential will dominate.
当优化问题所依赖的参数受到扰动时,优化问题的解会发生什么样的变化,这一问题不仅在评估数学模型的稳定性方面很重要,而且在计算程序的设计和论证方面也很重要。 参数依赖性问题也是在动态优化中有效利用“剩余成本”函数的关键,无论是在最优控制还是在随机规划中。 该项目将推进处理这种依赖关系的方法,并探讨其对计算的影响。将应用变分分析中的最新工具,这是必不可少的,因为参数依赖关系中固有的非光滑性。将在有限维和无限维的广泛框架内研究最优性条件的替代形式,特别是扰动鲁棒性。 凸动力优化中的成本函数将从确定性连续时间模型(与Hamilton-Jacobi理论的联系)和随机离散时间模型(其中数值势将占主导地位)的新角度进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
R. Tyrrell Rockafellar其他文献
Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm
- DOI:
10.1007/s10589-023-00494-z - 发表时间:
2023-05-25 - 期刊:
- 影响因子:2.000
- 作者:
R. Tyrrell Rockafellar - 通讯作者:
R. Tyrrell Rockafellar
A dual approach to solving nonlinear programming problems by unconstrained optimization
- DOI:
10.1007/bf01580138 - 发表时间:
1973-12-01 - 期刊:
- 影响因子:2.500
- 作者:
R. Tyrrell Rockafellar - 通讯作者:
R. Tyrrell Rockafellar
Generalized Nash Equilibrium from a Robustness Perspective in Variational Analysis
- DOI:
10.1007/s11228-024-00722-6 - 发表时间:
2024-06-11 - 期刊:
- 影响因子:1.100
- 作者:
R. Tyrrell Rockafellar - 通讯作者:
R. Tyrrell Rockafellar
Calibrating probability distributions with convex-concave-convex functions: application to CDO pricing
- DOI:
10.1007/s10287-013-0176-4 - 发表时间:
2013-07-10 - 期刊:
- 影响因子:1.300
- 作者:
Alexander Veremyev;Peter Tsyurmasto;Stan Uryasev;R. Tyrrell Rockafellar - 通讯作者:
R. Tyrrell Rockafellar
Variational Analysis of Nash Equilibrium
- DOI:
10.1007/s10013-017-0260-0 - 发表时间:
2017-11-04 - 期刊:
- 影响因子:0.700
- 作者:
R. Tyrrell Rockafellar - 通讯作者:
R. Tyrrell Rockafellar
R. Tyrrell Rockafellar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('R. Tyrrell Rockafellar', 18)}}的其他基金
Variational Analysis in Problems of Optimization
最优化问题中的变分分析
- 批准号:
0104055 - 财政年份:2001
- 资助金额:
$ 11.55万 - 项目类别:
Continuing Grant
Mathemetical Sciences: Variational Analysis and Dynamical Optimization
数学科学:变分分析和动态优化
- 批准号:
9500957 - 财政年份:1995
- 资助金额:
$ 11.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Optimal Control Problems and Nonsmooth Analysis
数学科学:最优控制问题和非光滑分析
- 批准号:
9200303 - 财政年份:1992
- 资助金额:
$ 11.55万 - 项目类别:
Continuing Grant
Travel of U.S.-Scientist under the U.S.-India Exchange of Scientists Program
美印科学家交流计划下的美国科学家旅行
- 批准号:
9203124 - 财政年份:1991
- 资助金额:
$ 11.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Optimal Control Problems and Nonsmooth Analyses
数学科学:最优控制问题和非光滑分析
- 批准号:
8819586 - 财政年份:1989
- 资助金额:
$ 11.55万 - 项目类别:
Standard Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8804589 - 财政年份:1988
- 资助金额:
$ 11.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Optimal Control Problems: SubgradientMethods and Duality
数学科学:最优控制问题:次梯度方法和对偶性
- 批准号:
8315377 - 财政年份:1983
- 资助金额:
$ 11.55万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120684 - 财政年份:2021
- 资助金额:
$ 11.55万 - 项目类别:
Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120683 - 财政年份:2021
- 资助金额:
$ 11.55万 - 项目类别:
Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120692 - 财政年份:2021
- 资助金额:
$ 11.55万 - 项目类别:
Standard Grant
Development of a methodology for resource-efficient lightweight optimization through the analysis of mass reduction and mass redistribution potential in early stages of product development
通过在产品开发的早期阶段分析质量减少和质量再分配潜力,开发资源高效的轻量化优化方法
- 批准号:
444633215 - 财政年份:2020
- 资助金额:
$ 11.55万 - 项目类别:
Research Grants
Methodology for multiple response optimization of lean and resource efficient manufacturing systems
精益和资源高效制造系统的多重响应优化方法
- 批准号:
386445566 - 财政年份:2018
- 资助金额:
$ 11.55万 - 项目类别:
Research Grants
Study on Multi-Objective Optimization Methodology Considering Trajectory Feasibility under Uncertainties
考虑不确定性下轨迹可行性的多目标优化方法研究
- 批准号:
17K14877 - 财政年份:2017
- 资助金额:
$ 11.55万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Equivalent optically transparent circuits: an optimization-driven methodology for the design of optically transparent sensors and antennas
等效光学透明电路:光学透明传感器和天线设计的优化驱动方法
- 批准号:
501034-2016 - 财政年份:2017
- 资助金额:
$ 11.55万 - 项目类别:
Collaborative Research and Development Grants
Equivalent optically transparent circuits: an optimization-driven methodology for the design of optically transparent sensors and antennas
等效光学透明电路:光学透明传感器和天线设计的优化驱动方法
- 批准号:
501034-2016 - 财政年份:2016
- 资助金额:
$ 11.55万 - 项目类别:
Collaborative Research and Development Grants
Geologically-constrained geophysical inversions of the Renard kimberlite pipes: optimization of anew diamond exploration methodology
雷纳德金伯利岩管的地质约束地球物理反演:新钻石勘探方法的优化
- 批准号:
505359-2016 - 财政年份:2016
- 资助金额:
$ 11.55万 - 项目类别:
Engage Plus Grants Program
Fundamental study of liquid cooling methodology for layered electrical components and its optimization
分层电气元件液体冷却方法的基础研究及其优化
- 批准号:
15K05836 - 财政年份:2015
- 资助金额:
$ 11.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)